

Project Title SCAlable LAttice Boltzmann Leaps to Exascale

Project Acronym SCALABLE

Grant Agreement No. 956000

Start Date of Project 01.01.2021

Duration of Project 36 Months

Project Website www.scalable-hpc.eu

D3.5 – Adaptation of pre-processing

Work Package WP 3.5, Adaption of pre-processing

Lead Author (Org) Raphael Kuate (CSGROUP)

Contributing Author(s)
(Org)

Reviewed by Romain Cuidard (CSGROUP)

Approved by Management Board

Due Date 01.07.2022

Date 29.08.2022

Version V1.0

Dissemination Level

X PU: Public

 PP: Restricted to other programme participants (including the Commission)

 RE: Restricted to a group specified by the consortium (including the Commission)

 CO: Confidential, only for members of the consortium (including the Commission)

http://www.scalable-hpc.eu/

Versioning and contribution history

Version Date Author Notes

0.1 25.07.2022 Raphael Kuate (CSGROUP)

Reviewed by Romain
Cuidard

1.0 29.08.2022 Corentin Lefevre (Neovia) Minor editions –
Version approved by
the MB

Disclaimer

This document contains information which is proprietary to the SCALABLE Consortium. Neither this
document nor the information contained herein shall be used, duplicated or communicated by any
means to a third party, in whole or parts, except with the prior consent of the SCALABLE Consortium.

Table of Contents

Versioning and contribution history ... 2

Table of Contents .. 2

List of Figures .. 3

Executive Summary ... 3

1 Introduction ... 3

1.1 Context .. 3

1.2 Objective.. 3

2 Memory footprint .. 4

2.1 Analysis .. 4

2.2 Implementation ... 4

2.2.1 Optimization of the migrate step ... 4

2.2.2 Memory defragmentation ... 4

3 Load balancing for solver step targeting GPU cores .. 6

3.1 Algorithm summary ... 6

4 Conclusion and perspectives ... 8

5 Bibliography ... 8

List of Figures

FIGURE 1- MEMORY FOOTPRINT IMPROVEMENTS. SCHEME D3Q19HRR WITH DOUBLE PRECISION (TOP PICTURE) AND

SINGLE PRECISION (BOTTOM PICTURE) COMPUTATIONS. ... 6
FIGURE 2- LOAD BALANCING ON N CPU CORES TARGETING P GPU CORES. ONLY THE STEPS LAUNCHED AFTER BALANCE HAVE

THEIR ELAPSED TIME REDUCED IN A CONFIGURATION WITH N CPU CORES → P GPU CORES COMPARED TO A WHOLE N

CPU CORES CONFIGURATION, SINCE DATA EXCHANGE IS REDUCED, EXTERNAL NODES (COMMUNICATION HALO)

DECREASING AS WELL AS P DECREASES, COMPARED TO N. .. 8

Executive Summary

The main objective of SCALABLE for CS GROUP is the improvement of LaBS deployment in
bigger clusters of thousands of cores, achieved by a transfer of performance technology from
WaLBerla. In the earlier work package 3.1, we have investigated the choice of an appropriate
data structure organization for LaBS. We have shown that neither structured nor mixed
structured/unstructured data organization were significantly more efficient compared to the
current LaBS unstructured data design on industrial applications involving complex
simulations. Therefore, this work package 3.5 focusses on adapting the pre-process step of
LaBS for a solver step targeting GPU processors.

1 Introduction

1.1 Context

Lattice Boltzmann methods (LBM) are nowadays trustworthy alternatives to conventional
CFD methods, since it has been already shown in several engineering applications that they
are faster than Navier-Stokes approaches in comparable scenarios. LBMs can handle complex
geometries and a wide range of multiphysics applications that are of high industrial relevance.
The main distinguishing feature of the LBM is its algorithmic locality stemming from an explicit
time step. Thus, the LBM is especially well-suited to exploit advanced supercomputer
architectures through vectorization, accelerators, and massive parallelization.
WaLBerla is one of the most advanced LBM research codes in the public domain. Its superb
performance and unlimited scalability have been proven, reaching more than a trillion lattice
cells already on Peta-scale systems. WaLBerla performance excels in academic use cases
because of its carefully designed implicit blocks data structures. However, waLBerla is not
compliant with industrial applications due to lack of a complex geometry engine and user-
friendliness for non-HPC experts.
The CFD software LaBS is an industrial LBM code with capabilities at a proven high level of
maturity, but with high scalability performance in improvement. Therefore, in the context of
EuroHPC, SCALABLE will transfer the performance technology from waLBerla to LaBS. This
collaboration will deliver improved scalability for LaBS as preparation for the upcoming
European Exascale systems.

1.2 Objective

Commenté [A1]: Do our walberla colleagues agree with this
assessment?

Commenté [A2R1]: I hope so. This part of the context was
already stated in an earlier report.

The main objective of SCALABLE for CS GROUP is the improvement of LaBS deployment in
bigger clusters of thousands of cores. The current usage context of LaBS, depending on the
use case, is around a thousand of CPU cores. However, LBM simulations can also be suitable
on GPUs clusters, since their level of regular parallelism is very high, as well as their memory
bandwidth. Therefore, we have investigated on LaBS evolutions for the handling of GPUs
clusters.
The remainder of this document is organized as follows. In the next section, we present the
memory footprint improvements implemented and tested on the D3Q19HRR scheme for
single and double precision computations. The last section before conclusion present results
of the pre-processing step launched on CPU cores targeting solver step on GPU cores.

2 Memory footprint

2.1 Analysis

In complex industrial simulations, one may expect that the critical memory consumption
happens during the solver step, since its elapsed time is about the whole computation time,
pre-processing and post-processing steps being of lesser importance. In some cases, we have
observed that the pre-processing step of LaBS may have a bigger memory footprint than the
solver step. In LaBS, the unstructured cell design of data is combined with an organization
into families of cells of which the same LBM computation functions are applied. Many families
with the same properties can be grouped into tribes. The storage of the variables computed
is done at the tribe level. The way that data is chunked into tribes results in a compromising
objective of solver speed and memory fragmentation and was designed for CPU clusters.
However, with the target objective of deploying LaBS on GPU clusters, we have investigated
these points together with the domain decomposition sub-step of the pre-processing, and it
happens that during the migration of notes in the load-balancing sub-step, the memory
footprint sometimes reaches its critical value.

2.2 Implementation

Without describing technical aspects of all the pre-processing steps of LaBS and its memory
fragmentation, we have implemented and tested an optimization of the memory footprint of
LaBS on a D3Q19HRR scheme. These optimizations can be divided in two parts.

2.2.1 Optimization of the migrate step

The main problem in this pre-processing sub step is the using of a double data structure (AoS
and SoA) links for accessing data from different parts of the code. As a first optimization, new
links are serialized and recorded in temporary files, the old links are destroyed, and the new
ones are reloaded from the temporary files.

2.2.2 Memory defragmentation

At the end of pre-processing sub-steps Scheduler0, Scheduler, Migrate, the data structures
needed for the sub-steps Surfaces, Cut, Piece, Schedule are serialized and written to
temporary files, the memory is cleared, removing chunks created by data unused for the
next sub-steps. Data structure of the next sub-steps are then reloaded from temporary files.

Commenté [A3]: I don’t get that

Commenté [A4R3]: elapsed time in solver step is about the
whole elapsed time of the simulation

The following pictures show some improvements on memory footprint particularly on the
pre-processing step which includes all steps listed in the picture except solver, merger and
poster.

Figure 1- Memory footprint improvements. Scheme D3Q19HRR with double precision (top picture) and single precision
(bottom picture) computations.

3 Load balancing for solver step targeting GPU cores

The objective of launching LaBS on GPU clusters needs some adaptions of the pre-processing,
since only arithmetical calculations – and consequently the solver step – are most suitable for
GPU cores. Considering a cluster with P GPU cores and N CPU cores, one may want to use the
entire N CPU cores for pre-processing, the results of which must target the P GPU cores in the
solver step. We have adapted the load balancing such that the pe-processing step can be
launched on N CPU core for a solver step targeting P GPU cores, N > P.

3.1 Algorithm summary

The number P of GPU cores needed is read as argument of the LaBS executable and recorded
in the detect sub-step of the pre-processing, it may also be automatically detected in the
future GPU version of LaBS. In the detect sub-step, the CPU IDs of processes within each
cluster node are also recorded. The different sub-steps of the pre-processing are executed as
usually on N CPU cores until the balance sub-step. At this balance sub-step, instead of load-
balancing among the N CPU cores as usual, the data is rebalanced among P CPU cores, each
of which mapping exactly the number of GPU cores of each cluster node, emptying the
remaining CPU IDs (not mapped with any GPU core) of each cluster node recorded at detect
step.

The part of the LaBS log file above shows how nodes are distributed only among the target
GPU P processes. The figure above shows a comparison of the elapsed time of a run with full
N cores versus a run with N → P cores, i.e., N cores in pre-processing steps and P cores in
solver step. One can observe that the elapsed time for the N → P configuration decreases as
P decreases, since the size of external nodes (communication halo) growths with the number
of sub-domains of the domain decomposition.

Figure 2- Load balancing on N CPU cores targeting P GPU cores. Only the steps launched after Balance have their elapsed
time reduced in a configuration with N CPU cores → P GPU cores compared to a whole N CPU cores configuration, since

data exchange is reduced, external nodes (communication halo) decreasing as well as P decreases, compared to N.

4 Conclusion and perspectives

We have presented initial improvements of the pre-processing steps of LaBS for the solver
step targeting GPU cores, in order to deploy LaBS on GPU clusters. As perspectives, the
improvement of the solver step memory footprint and the implementation of a GPU version
of the solver step are the next work for the achievement of the current developments.

5 Bibliography

[1] F. Schornbaum, "Block-Structured Adaptive Mesh Refinement for Simulations on
Extreme-Scale Supercomputers," 2018.

[2] C. Feichtinger, S. Donath, H. Köstler, J. Götz and U. Rüde, "WaLBerla: HPC software design
for computational engineering simulations," Journal of Computational Science, vol. 2, pp.
105-112, 2011.

[3] C. Godenschwager, F. Schornbaum, M. Bauer, H. Köstler and U. Rüde, "A Framework for
Hybrid Parallel Flow Simulations with a Trillion Cells in Complex Geometries," in
Proceedings of the International Conference on High Performance Computing,
Networking, Storage and Analysis, New York, NY, USA, 2013.

[4] F. Schornbaum and U. Rüde, "Massively Parallel Algorithms for the Lattice Boltzmann
Method on NonUniform Grids," SIAM J. Sci. Comput., vol. 38, 2016.

