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Executive Summary 

The main objective of SCALABLE for CS GROUP is the improvement of LaBS deployment in 
bigger clusters of thousands of cores, achieved by a transfer of performance technology from 
WaLBerla. In the earlier work package 3.1, we have investigated the choice of an appropriate 
data structure organization for LaBS. We have shown that neither structured nor mixed 
structured/unstructured data organization were significantly more efficient compared to the 
current LaBS unstructured data design on industrial applications involving complex 
simulations. Therefore, this work package 3.5 focusses on adapting the pre-process step of 
LaBS for a solver step targeting GPU processors.  
 

1 Introduction 

1.1 Context 

Lattice Boltzmann methods (LBM) are nowadays trustworthy alternatives to conventional 
CFD methods, since it has been already shown in several engineering applications that they 
are faster than Navier-Stokes approaches in comparable scenarios. LBMs can handle complex 
geometries and a wide range of multiphysics applications that are of high industrial relevance. 
The main distinguishing feature of the LBM is its algorithmic locality stemming from an explicit 
time step. Thus, the LBM is especially well-suited to exploit advanced supercomputer 
architectures through vectorization, accelerators, and massive parallelization. 
WaLBerla is one of the most advanced LBM research codes in the public domain. Its superb 
performance and unlimited scalability have been proven, reaching more than a trillion lattice 
cells already on Peta-scale systems. WaLBerla performance excels in academic use cases 
because of its carefully designed implicit blocks data structures. However, waLBerla is not 
compliant with industrial applications due to lack of a complex geometry engine and user-
friendliness for non-HPC experts. 
The CFD software LaBS is an industrial LBM code with capabilities at a proven high level of 
maturity, but with high scalability performance in improvement. Therefore, in the context of 
EuroHPC, SCALABLE will transfer the performance technology from waLBerla to LaBS. This 
collaboration will deliver improved scalability for LaBS as preparation for the upcoming 
European Exascale systems. 

1.2 Objective 
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The main objective of SCALABLE for CS GROUP is the improvement of LaBS deployment in 
bigger clusters of thousands of cores. The current usage context of LaBS, depending on the 
use case, is around a thousand of CPU cores. However, LBM simulations can also be suitable 
on GPUs clusters, since their level of regular parallelism is very high, as well as their memory 
bandwidth. Therefore, we have investigated on LaBS evolutions for the handling of GPUs 
clusters. 
The remainder of this document is organized as follows. In the next section, we present the 
memory footprint improvements implemented and tested on the D3Q19HRR scheme for 
single and double precision computations. The last section before conclusion present results 
of the pre-processing step launched on CPU cores targeting solver step on GPU cores.  

2 Memory footprint 

2.1 Analysis 

In complex industrial simulations, one may expect that the critical memory consumption 
happens during the solver step, since its elapsed time is about the whole computation time, 
pre-processing and post-processing steps being of lesser importance. In some cases, we have 
observed that the pre-processing step of LaBS may have a bigger memory footprint than the 
solver step. In LaBS, the unstructured cell design of data is combined with an organization 
into families of cells of which the same LBM computation functions are applied. Many families 
with the same properties can be grouped into tribes. The storage of the variables computed 
is done at the tribe level. The way that data is chunked into tribes results in a compromising 
objective of solver speed and memory fragmentation and was designed for CPU clusters. 
However, with the target objective of deploying LaBS on GPU clusters, we have investigated 
these points together with the domain decomposition sub-step of the pre-processing, and it 
happens that during the migration of notes in the load-balancing sub-step, the memory 
footprint sometimes reaches its critical value. 
 

2.2 Implementation 

Without describing technical aspects of all the pre-processing steps of LaBS and its memory 
fragmentation, we have implemented and tested an optimization of the memory footprint of 
LaBS on a D3Q19HRR scheme. These optimizations can be divided in two parts. 

2.2.1 Optimization of the migrate step 

The main problem in this pre-processing sub step is the using of a double data structure (AoS 
and SoA) links for accessing data from different parts of the code. As a first optimization, new 
links are serialized and recorded in temporary files, the old links are destroyed, and the new 
ones are reloaded from the temporary files. 

2.2.2 Memory defragmentation 

At the end of pre-processing sub-steps Scheduler0, Scheduler, Migrate, the data structures 
needed for the sub-steps Surfaces, Cut, Piece, Schedule are serialized and written to 
temporary files, the memory is cleared, removing chunks created by data unused for the 
next sub-steps. Data structure of the next sub-steps are then reloaded from temporary files. 
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The following pictures show some improvements on memory footprint particularly on the 
pre-processing step which includes all steps listed in the picture except solver, merger and 
poster.  
 

 
 



   
 

   
 

 
Figure 1- Memory footprint improvements. Scheme D3Q19HRR with double precision (top picture) and single precision 
(bottom picture) computations. 

3 Load balancing for solver step targeting GPU cores 

The objective of launching LaBS on GPU clusters needs some adaptions of the pre-processing, 
since only arithmetical calculations – and consequently the solver step – are most suitable for 
GPU cores. Considering a cluster with P GPU cores and N CPU cores, one may want to use the 
entire N CPU cores for pre-processing, the results of which must target the P GPU cores in the 
solver step. We have adapted the load balancing such that the pe-processing step can be 
launched on N CPU core for a solver step targeting P GPU cores, N > P.  

3.1 Algorithm summary 

The number P of GPU cores needed is read as argument of the LaBS executable and recorded 
in the detect sub-step of the pre-processing, it may also be automatically detected in the 
future GPU version of LaBS. In the detect sub-step, the CPU IDs of processes within each 
cluster node are also recorded. The different sub-steps of the pre-processing are executed as 
usually on N CPU cores until the balance sub-step. At this balance sub-step, instead of load-
balancing among the N CPU cores as usual, the data is rebalanced among P CPU cores, each 
of which mapping exactly the number of GPU cores of each cluster node, emptying the 
remaining CPU IDs (not mapped with any GPU core) of each cluster node recorded at detect 
step. 



   
 

   
 

  

 

The part of the LaBS log file above shows how nodes are distributed only among the target 
GPU P processes. The figure above shows a comparison of the elapsed time of a run with full 
N cores versus a run with N → P cores, i.e., N cores in pre-processing steps and P cores in 
solver step. One can observe that the elapsed time for the N → P configuration decreases as 
P decreases, since the size of external nodes (communication halo) growths with the number 
of sub-domains of the domain decomposition.   



   
 

   
 

 
Figure 2- Load balancing on N CPU cores targeting P GPU cores. Only the steps launched after Balance have their elapsed 
time reduced in a configuration with N CPU cores → P GPU cores compared to a whole N CPU cores configuration, since 

data exchange is reduced, external nodes (communication halo) decreasing as well as P decreases, compared to N.   

4 Conclusion and perspectives 

We have presented initial improvements of the pre-processing steps of LaBS for the solver 
step targeting GPU cores, in order to deploy LaBS on GPU clusters. As perspectives, the 
improvement of the solver step memory footprint and the implementation of a GPU version 
of the solver step are the next work for the achievement of the current developments.  
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