
Project Title SCAlable LAttice Boltzmann Leaps to Exascale
Project Acronym SCALABLE
Grant Agreement No. 956000
Start Date of Project 01.01.2021
Duration of Project 36 Months
Project Website www.scalable-hpc.eu

D4.1
Initial Report on Application Optimisation

Work Package WP 4: Performance Engineering - Hardware/Middleware
Lead Author Jayesh Badwaik(Forschungzentrum Jülich)
Contributing Authors Jayesh Badwaik, Markus Holzer, Milena Veneva,
Romain Cuidard, Kristian Kad-
lubiak
Reviewed By Harald Köstler, Alois Sengissen
Due Date 01.01.2021
Date 14.06.2022
Version 1.0

Dissemination Level

⊠ PU: Public

□ PP: Restricted to other programme participants (including the Commission)

□ RE: Restricted to a group specified by the consortium (including the Commission)

□ CO: Confidential, only for members of the consortium (including the Commission)

Copyright © 2021 – 2023, The Scalable Consortium

The Scalable project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement number 956000.

www.scalable-hpc.eu


Deliverable Information

Deliverable D4.1
Deliverable Type Report
Deliverable Title Initial Report on Application Optimisation
Keywords
Dissemination Level Public

Work Package WP 4: Performance Engineering - Hardware/Middleware
Lead Partner Forschungzentrum Jülich
Lead Author Jayesh Badwaik
Contributing Authors Jayesh Badwaik, Markus Holzer, Milena Veneva,
Romain Cuidard, Kristian Kad-
lubiak
Reviewed By Harald Köstler, Alois Sengissen

Due Date 01.01.2021
Planned Date 01.02.2021
Version 1.0
Final Version Date 14.06.2022

Disclaimer:

The opinions of the authors expressed in this document do not necessarily reflect the official opinion of
the SCALABLE partners nor of the European Commission.

The Scalable project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement number 956000.

2



Initial Report on Application Optimisation
Jayesh Badwaik, Markus Holzer, Milena Veneva,

Romain Cuidard, Kristian Kadlubiak

August 1, 2022

The report describes initial experiments with performance optimizations for LaBS and Walberla
codes. In particular, we describe the optimizations in communication algorithms for LaBS and
kernel launch optimizations for Walberla.

1 Introduction

One of the objectives of the SCALABLE project is to prepare LBM applications for exascale architectures. In
particular, the objective is to prepare Widely Applicable Lattice Boltzmann from Erlangen (waLBerla) and
LaBS for exascale architecture. For the purpose of initial steps in optimization, the strategy was to continue
two different tasks in parallel, benchmarking and profiling the use cases of the project which is done in D2.2
and exploring different techniques that might be used for optimization the use cases later on, which is done in
this document.
In particular, for LaBS, we explore the possibility of reducing time consumption in communication and

synchronization for moving domains and domains with multiple resolution. In Walberla, we explore reducing
the overhead of launching GPU kernels by exploring the use of CUDA Task Graph.

2 LaBS

2.1 Introduction
LaBS is divided on several step as described in Figure 1 a lot of those steps are used for generating a mesh
and preparing the computation. Solver is the main step with all the physical computation.

For the industrial test cases, the solver step take more than 90% of the simulation time. So in the first time
our objective is to focus on the scalability (and performance in general) of that step. We will be working on
other steps only if they are blocking the simulation.

2.2 Reduction of Wait Time for Moving Region
2.2.1 Introduction

In LaBS, usecases with moving region suffer of heavy time consumption in MPI communication and synchroni-
sation in compare to standard cases.
In the LaBS, moving regions are limited to rotation invariant domains, so pre-computations are done on

a complete rotation. During a rotation, a border mobile node will need information from many fixed nodes.
Those fixed nodes can belong to several different processors, so each border mobile node can generate a lot
of MPI exchanges. The wider the moving regions is and the more there is an MPI process, the more the
number of MPI exchanges is important and thus the time passed in the MPI communication is important.
This behaviour is not good for scalability.

2.2.2 Solution

For a given time, a border mobile node doesn’t need to perform MPI exchanges with all nodes sweep during the
complete rotation, and it’s too expensive to determine for each time step which processor holds the information
needed. So our solution is to slice the rotation. In the current implementation a rotation is sliced every 256
time intervals. The number 256 comes from empirical studies.

The Scalable project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement number 956000. 3



2 LaBS 2.2 Reduction of Wait Time for Moving Region

Figure 1: Description of Steps in LaBS Solver

Figure 2: Time Step Based Slicing of a Rotating Domain

The Scalable project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement number 956000.

4



2 LaBS 2.3 Delay

Figure 3: Delay Mechanism in LaBS

test case nb cores fuild nodes/cores compute send/recv wait total
S2A 64 0.7M 2% 27% 55% 21 %

S2A long 64 0.7M 2% 29% 48% 19 %
J84 160 0.9M 4% 47% 41% 20 %
J84 288 0.5M -4% 19% 71% 44 %

J84 long 288 0.5M 2% 19% 40% 19 %
J84 480 0.3M -4% 6% 45% 19 %
X62 96 0.7M -4% 46% 58% 22 %
X62 96 0.7M -2% 37% 55% 24 %

2.2.3 Results

With this optimisation, we have greatly reduced the data exchanged between processors and the time spend in
communication. For a pulse on uniform mesh with a rotating domain we have obtained the following results:

number of processors nanoseconds/(fine node*timestep) exch. bytes/(fine node*timestep)
256 before 6693 ns 422B

after 876 ns 33B
gain 87% 92%

512 before 11753 ns 530B
after 1463 ns 46B
gain 88% 91%

2.3 Delay
2.3.1 Introduction

The LaBS suffer of heavy time consumption in communication. The main problem is that numerical computa-
tions are really fast (explicit scheme) and need a lot of synchronisation specially within multiple resolution
domains. In that case load balancing must be really precise (around the nanosecond). Regarding the
optimisation, our main work is to reduce time used in communication.

2.3.2 Solution

One of our answers to reduce the time passed in communication is a feature called ”Delay”. Between each
synchronisation a timeLimit is set on all processors and during the solver step, when time elapsed in a
computation on a processor exceeds the timeLimit, this computation is stopped (if it’s possible) and the
synchronisation is enforced. The computation will resume after the data sent to other processor.

The timeLimit is computed with forecast time of the different computation kernel specified in the tuning for
the first cycle and then it’s computed with B measured values of the previous cycle.
The user may specify a maxDelay limit, that prevent the computation to be delayed more than maxDelay

times. If the user set the maxDelay to 1, all the delay mechanism is disable.

2.4 Vectorization
Mostly all of the HPC-oriented CPU architecture features vector units. These are pieces of hardware capable
of applying a single operation on a vector of data in so called SIMD fashion. These SIMD units greatly
increase the theoretical peak performance of the CPU. To access these resources, special instructions have
to be generated. This process is called vectorization. Although, modern compilers are usually capable of
automatic vectorization, in some situations such vectorization is inefficient or not possible at all. This is also
the case with LaBS. To vectorize computation kernels in LaBS, a combination of techniques has been applied

The Scalable project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement number 956000.

5



2 LaBS 2.5 Cache Reuse Optimization

Baseline Vectorisation Cache Reuse
cells MLUPS MLUPS speedup MLUPS speedup
16384 3.17 4.89 1.54 5.27 1.66
65536 2.66 3.51 1.31 3.82 1.43
262144 2.66 3.28 1.23 3.84 1.44
1048576 2.02 2.94 1.45 3.20 1.58
4194304 2.27 3.51 1.54 3.93 1.72
16777216 2.23 3.04 1.36 3.27 1.46

Table 1: Performance Comparison in Millions Lattice Updates Per Second (MLUPS)

including loop permutation, code transformation, and compiler directives insertion. This way a more efficient
vectorized code can be generated which improves single-core performance.

To evaluate the impact of manual vectorization, a fairly straightforward COVO test case has been chosen.
This test case was chosen based on several features. Firstly, the test case requires almost no communication
and mostly consists of computation. It allows the pinpointing impact of vectorization on the performance of
the compute part in LaBS. Secondly, it requires evaluation of only several kernels with the top two consuming
around 70% of the total computation time. Therefore we can demonstrate the benefit of manual vectorization
by only modifying a couple of kernels. Finally, the size of the simulation domain can be easily specified, so
vectorization can be tested on various problem sizes.

Table 1 contains the performance evaluation of vectorization in columns 2 and 3. It can be seen that the
manual vectorization achieves 54% performance gain in the best case and around 40% gain on average.

2.5 Cache Reuse Optimization
The performance of many applications is limited by memory throughput. In such cases, optimizing cache
subsystem utilization can provide a notable performance boost. One of the techniques used to improve data
locality is loop fusion. This compiler optimization merges several loops together to increase data reuse. In
LaBS, a similar effect is achieved by applying several kernels consecutively on a single block of data whose size
can be optimized for concrete hardware. The aggregation of kernels has to respect data dependency between
kernels. This is depicted in Figure 2.5 where function GradientStd requires information from adjacent cells
thus creating a dependency. Functions that can be aggregated together are marked with the dashed line. The
data reuse factor and effect of this optimization depend on the type of task and functions used.
For evaluation of cache reuse optimization the same COVO test cases used in vectorization performance

analysis have been used. The amount of possible data reuse in these particular test cases is somewhat limited
and cannot display the full potential of optimization. We chose these test cases for the ability to show additional
benefits of cache reuse on top of vectorization.

Columns 3 and 4 of the Table 1 contains absolute performance in MLUPS and relative speedup respectively.
This optimization provides 72% improvement in performance together with vectorization compared to 54% of
vectorization alone. Additional performance ranges from 10% to 21% with an average of 14.3% compared to
vectorization.

2.6 Hybridization
In general, the main limiting factor of the scalability of the application is communication. With an increasing
number of processing elements involved in computation, the overhead of communication rises while computation
time per individual processing element decreases. This leads to a situation where for a certain number of
processing elements the run time of the application is entirely dominated by communication. There are
two fundamentally different approaches to communication, one based on explicit messages passing and one
using shared memory as means of communication. The explicit message passing advantage is the ability to
facilitate communication between any interconnected processing elements and work on a variety of connections.
This versatility comes at the expense of considerable overhead. The communication through shared memory,
on the other hand, is very lightweight but is only applicable in an environment where memory is shared
between processing elements which is usually a single computation node. The shared memory communication
also introduces new challenges resulting from data sharing as correct placement and synchronization. The
best performance is usually achieved using both methods resulting in a hybrid setup where shared memory
communication is used within the compute node and message passing is used to communicate between compute
nodes.

The Scalable project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement number 956000.

6



3 WaLBerla

PropagateMiddle

fcol(0,n-1) fcol(1,n-1) fcol(18,n-1)...

GradientStd

macro(1,n) macro(2,n) macro(6,n)...

Macroscopic

fdist(0,n) macroTurb(0,n-1)macro(0,n-1)

macro(0,n)

NuTurb

grad(0,n) macroTurb(0,n-1)grad(0,n-1)

Figure 4: Dependencies between kernels and kernel aggregation

LaBS up to this point only used message-passing communication in form of an MPI library. Therefore to
improve salability, a hybrid approach using the OpenMP standard for shared memory communication was
implemented. Most of the work related to hybridization, revolved around adapting data structures, classes,
and algorithms for sharing between several processing elements.

Due to technical difficulties and bugs in code, the effect of hybridization was evaluated only on a single node
of Karolina supercomputer at IT4I Ostrava. Karolina node consists of 2 processors AMD Zen 2 EPYC 7H12
featuring 64 cores each.
Figure 2.6 shows the performance of various combinations of message passing processes and threads

communicating through shared memory (x-axis) on various problem sizes. The right-most configuration
represents a purely message passing run (e.g. LaBS implementation before this optimization) and the left-most
represents a run using only communication through shared memory. In all cases, hybrid runs perform better
than purely message passing runs even on a single node where message passing overhead is minimal as the
network is not involved. The configuration consisting of 32 processes each with 4 threads achieves the best
performance on almost all problem sizes, which is expected given the hardware organization of this processor.
Performance of application on problem size 5122 is unusually high. Currently, there is no explanation for this
phenomenon and it will be investigated further.
In the future performance of hybridization will be tested on more communication-heavy problems using

multiple nodes. In these scenarios, it is expected that hybridization will provide even more performance boost,
and also the ratio of threads to processes of optimal configuration will be likely higher.

3 WaLBerla

The waLBerla is a modern open-source software framework that supports complex multiphysics simulations, and
that is specifically designed to address the performance challenge in computeational science and engineering:
exploiting the full power of the largest supercomputers. As mentioned, the waLBerla is a framework, and hence
consists of a lot of components which can then be assembled together to create the different applications.

Figure 6 shows the core structure of the waLBerla framework. In that context, for the waLBerla, we explore
the application of CUDA task graph to improve the performance of the LBM kernels.

The Scalable project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement number 956000.

7



3 WaLBerla

Figure 5: Performance of various configurations of hybrid run in LaBS Software

Figure 6: Overview of the waLBerla framework’s software architecture and components.

The Scalable project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement number 956000.

8



3 WaLBerla 3.1 Optimization using CUDA task graphs

Figure 7: Kernel Dependency Graph

3.1 Optimization using CUDA task graphs
In modern Nvidia GPUs, as the processing of the kernels become faster, the kernel launch times can also be
a bottleneck for execution of kernels. CUDA task graph allows the user to schedule kernels on the GPUs
ahead of time, either directly or with a dependency to another kernel. And thereby, reduce the time spent in
launching kernels. This can improve the performance of workloads where a lot of small kernels are launched in
the application. If the application uses the same graph multiple times, then the cost of launching of graphs
can be amortized.

For testing out this optimization, we started with an initial experiment of using the UniformGridGPU test
case in the Walberla code. We chose the test case due to its underlying uniform grid, which allows the code to
isolate the performance issues related to launching the kernel calls and ignore other issues like load balancing
or kernel launch scheduling optimizations.
A typical dependency graph of kernels and other operations in the UniformGridGPU example looks like

shown in Figure 7. The graph consists of kernels and MPI operations. The kernels can directly be added to
the CUDA task graph, however, the MPI operations, even when using GPUDirect RDMA are scheduled from
the CPU and therefore cannot be included as a part of the task graph. Therefore, we split the task graph
into five parts, four of them them identified by an enclosing colored boxes and the fifth one consisting of the
remaining functions. The four of them which are covered by the colored boxes are are CUDA task graphs and
the remaining one represents the MPI calls.
The Table 3 shows performance improvement when using these 4 task graphs in various configurations of

cells per block of the UniformGridGPU test case.
As we can see,the Table 3 shows that for small block sizes, the performance is almost double in compare to

the performance without CUDA task graph, however, for the large block sizes, there is only minor performance
improvement. This is in line with the expectations of the CUDA task graphs.

In future, Adaptive Mesh Refinement (AMR) on GPUs will be implemented in Walberla as a part of WP4.
In AMR, scalability can be an issue for smaller blocks of the mesh. The expectation is that use of CUDA task
graphs might reduce some of the overhead of launching of small blocks in that region and hence improve the

The Scalable project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement number 956000.

9



4 Conclusion

Configuration Cells Per Block GPU Block Size
1 (64,64,64) (32,1,1)
2 (128,128,128) (32,1,1)
3 (256,256,256) (32,1,1)
4 (320,320,320) (32,1,1)

Table 2: Configuration

Configuration No Graphs 4 Graphs
1 255.45 561.78
2 1314.27 561.78
3 2173.65 2287.76
4 2315.17 2442.24

Table 3: Performance Comparison in Millions Lattice Updates Per Second (MLUPS)

waLBerla scalability.

4 Conclusion

During the first phase of the SCALABLE project we have experimented with a couple of different optimizations.
In case of the LaBS, the optimizations have already been implemented in the production code. Before the
optimization, the performance in for simulations with moving meshes was much lower than the performance for
static meshes. With the optimizations, the performance for moving mesh is now on parity with performance
for static meshes. In case of the WaLBerla, we have achieved performance gains upto the order of 100% for
kernels on small blocks. These gains should help us improve the performance of the applications for more
complex use cases. The plan is now to mainstream the optimizations into the main code with the use cases
under the tasks in WP4.

The Scalable project has received funding from the European Union’s Horizon 2020 research and
innovation programme under grant agreement number 956000.

10


	Introduction
	LaBS
	Introduction
	Reduction of Wait Time for Moving Region
	Introduction
	Solution
	Results

	Delay
	Introduction
	Solution

	Vectorization
	Cache Reuse Optimization
	Hybridization

	WaLBerla
	Optimization using CUDA task graphs

	Conclusion

