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Chapter

1 Introduction
With the rapid development of today’s technologies and increasing access to high-performant supercomputers
and clusters, the number of modelling and hardware features increases accordingly for numerical schemes.
The lattice Boltzmann method (LBM) is no exception. Figure 1.1 [1] provides a small overview of features
that are supported by the lbmpy framework.

  

Models / Features
● Various 2D/3D stencils
● Moment-based methods (MRT)

● Efficient SRT and TRT implementations
● Moment based construction
● Various equilibria
● Forcing approaches

● Different collision spaces: central/cumulant
● Entropic stabilisation
● Locally varying relaxation rates, e.g. to include

in turbulence models
● Coupling of multiple kernels (e.g. thermal simulations)

Hardware / Optimisations
● GPU / CUDA and OpenCL support
● Guided or manual vectorisation

(AVX2, AVX512, Neon, SVE, VSX)
● Inner loop splitting to improve prefetching due 

to a lower number of load/store streams
● Sparse (list-based) kernels for domains

with many boundary cells
● Data layout: simple two grid stream collide,

AA-pattern, EsoTwist
● Generation of boundary treatment

in the LBM update rule

Figure 1.1.: Features for the LBM provided by lbmpy. The left hand side of the figure governs features
concerning the modelling part or the mathematical description, while the right hand side aims
for features in terms of different supported hardware or specific hardware optimisations.

On the modelling side, different LB stencils like D2Q9, D3Q19 or D3Q27 are commonly used (see appendix A).
Already the mentioned stencils indicate simulations in two or three dimensions. On top of that, various
approaches have been made in the literature to model the collision process. Among these, there are, e.g.,
moment-based methods like the SRT, TRT, MRT, or CLBM. But even more complex methods, like the
cumulant or regularised LBM, are used in practical applications [3, 5]. Just from the features mentioned above,
it is cumbersome to support all of them in a typical framework, written in a hardware-close language like C++
or Fortran. The reason for that is that these features need to be combinable with each other, and they need to
be compatible with the MPI communication and boundary conditions. Only supporting two different stencils,
e.g., D3Q19 and D3Q27, and a simple SRT scheme would already require two specialised LBM kernels or the
introduction of a higher abstraction level. The latter, however, can diminish the computational performance.
Additionally, one must provide an optimised scheme for the MPI communication of both stencils to ensure
a minimum data transfer, and specific boundary conditions need to be written. To make matters worse, the
LBM community uses different streaming schemes that have their respective advantages and disadvantages
[8]. The most important here would be the pull and push patterns, the A-A pattern, and the Esoteric Twist.
The last two are so-called in-place streaming patterns that have the advantage that no second temporary
field of particle distribution functions (PDFs) is needed. However, this comes at the cost of more complexity.
Only relying on in-place patterns is not possible. As these schemes come with a separate even and odd
timestep, it is by no means trivial to use them in more complex settings like multi-physics, e.g., phase-field
flows. Usually, a finite difference scheme is needed for these or truly compressible LBM schemes. Thus it
would be favourable to support such optimisations when they can be applied while falling back to a simple
scheme in more complicated scenarios. Nevertheless, MPI communication, boundary handling, and the LBM
kernel would need to be implemented again for each combination.

The Scalable project has received funding from the European Union’s Horizon 2020
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1. Introduction

On the other side, all implemented compute kernels need to run on some hardware and thus need to be
optimised for these. By looking at the CPU side, it is clear that many different architectures are using different
instructions sets for vectorisation. The most important ones are SSE, AVX2 and AVX512 for Intel and AMD
CPUs, but ARM-based CPUs using Neon or SVE instructions sets are gaining popularity. Although modern
compilers can generate optimised code containing vectorisation, it is usually not possible to automatically
enable specialised instructions like non-temporal stores that play an important role in the context of LBM
simulations. Besides CPUs, accelerator hardware like NVIDIA or AMD GPUs is used and well suited for the
LBM due to higher bandwidth. However, their kernels are distinct from their CPU counterparts, and need
their own specialised implementation.

From the above features on the model and hardware side, the possibly most complicated was still not covered:
the support of different data structures. Considering an LBM simulation, the optimal data structure highly
depends on the problem description. The simplest way to store PDFs during the execution of LBM is in
a linearized vector which represents the complete domain. With the direct addressing method, all cells are
associated with their respective entries in this PDF vector, earning it the alternative name of the full-array
method. The direct addressing makes it possible to locate neighbouring cells needed for streaming through
simple index calculation. Compared to the direct addressing method, indirect addressing is exceptionally
efficient for domains interspersed with many disjointed solid cells. This method only allocates memory space
for fluid cells, resulting in a sparse PDF vector. During an initialization step, so-called index arrays are
created where all necessary information regarding neighbourhood is stored: For 𝑞 velocity directions, each
fluid cell is assigned 𝑞 − 1 PDF indices that indicate where neighbouring PDFs are stored. The centre PDF
value of a cell is the only one that is not streamed and can therefore be directly addressed.

The Scalable project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement number 956000. 6



Chapter

2 Code generation for indirect
addressing LBM kernels

Chapter 2 covers the basic steps for the generation of LBM kernels using indirect addressing. The scope of
deliverable 5.1 is to generate compute kernels for the LBM using an indirect addressing scheme, which is well
suited for fluid simulations in sparse domains with many obstacle cells. In order to achieve the task, the code
generation frameworks lbmpy [1] and pystencils [2] are used

An overview of the software stack is given in fig. 2.1 [4]. As a first stage, the equation set defining a certain
LBM is derived using lbmpy. Inside lbmpy this is achieved by using sympy as a computer algebra toolbox.
This means lbmpy exclusively acts on the modelling level, thus, on the level of the mathematical description.
Just defining the mathematical model say defining the collison operator is insufficient to generate the complete
kernel. They are only useful to generate a mathematical form using sympy. The final compute kernel loop
needs additional information, namely, the data access pattern of the compute kernel. Until this stage, it was
only necessary to use sympy for mathematical manipulation. However, additional information is needed for
the generation of the compute kernels.

lbmpy / pystencilsModel
creation

Code gen-
eration and
optimisation

Compute
kernel

Boundary
conditions

Communi-
cation

Backends CPU: C-Code
GPU: CUDA and OpenCL

Execution Interactively
with IPython

MPI distributed
with waLBerla

Figure 2.1.: Complete workflow of combining lbmpy and waLBerla for MPI parallel execution. Furthermore,
lbmpy can be used as a stand-alone package for prototyping.

The missing information concerns the access of the data in the later compute kernel. To add this information
to the derived equations pystencils is used. In pystencils the concept of a Field is implemented. This concept
should be explained with a simple five-point stencil. The laplacian in an equidistant grid can be approximated
with:

The Scalable project has received funding from the European Union’s Horizon 2020
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2. Code generation for indirect addressing LBM kernels 2.1. Code generation for direct addressing schemes

∇2𝑓(𝑥, 𝑦) ≈ 𝑓(𝑥 − 1, 𝑦) + 𝑓(𝑥 + 1, 𝑦) + 𝑓(𝑥, 𝑦 − 1) + 𝑓(𝑥, 𝑦 + 1) − 4𝑓(𝑥, 𝑦) (2.1)

Equation (2.1) could directly be found in the literature as a discretisation scheme. As the discretisation is
derived for a specific grid, this information is also encoded in the equation. Here we can find the information
in the arguments of the function 𝑓 . Thus 𝑓(𝑥 − 1, 𝑦) expresses the access of the left neighbour point. This
idea is encoded in the pystencils Field. The update scheme for eq. (2.1) would be defined in pystencils as:

dst0
(0,0) ← src0

(−1,0) + src0
(1,0) + src0

(0,−1) + src0
(0,1) − 4src0

(0,0) (2.2)

Let us now look at one specific part of the above assignment. For example let us look at src0
(−1,0). Firstly, it

contains a special index (−1, 0), the so-called spatial index. It represents data access in a spatial direction,
e.g., (−1, 0) represents the access of a two-dimensional data field at the left point. Hence, when looping over
the shape of the two-dimensional Field, it can be represented as 𝑝𝑑𝑓[𝑖 − 1, 𝑗] where 𝑖, 𝑗 are the loop counters.
The superscript, in the example it is 0, refers to the index inside a cell. So, in this case, we refer to the
zeroth value in the cell. Since eq. (2.1) is defined for a scalar field, only the zeroth entry in each cell can be
obtained. If 𝑠𝑟𝑐 were a Vector field, an individual cell would contain more than one data point. The idea
of pystencils is now that each of the above field accesses acts as a sympy symbol. Thus as a mathematical
variable. This means it is possible to apply all mathematical manipulations and optimisations provided by
the sympy framework.

When the update scheme is defined in pystencils it is possible to generate the compute kernel. Furthermore,
since the pystencils Field has the information of the field accesses, it is possible to directly determine which
data points to send when dealing with a larger decomposed computation that is distributed among several
compute nodes.

The generated compute kernel can be executed directly with pystencils in a Python environment. Additionally,
it is also possible to print the kernels in a boilerplate class provided by waLBerla. Thus the cond generation
can be seemingly used by waLBerla. waLBerla then brings the domain decomposition functionality so
that large scale simulations would be enabled. However, the generation of the communication scheme is
covered in deliverable 5.3 and thus should not be looked at here.

2.1. Code generation for direct addressing schemes

Firstly, the implementation of the direct scheme is revisited to understand which changes are necessary for the
indirect addressing scheme. In lbmpy, kernels are expressed in terms of Assignments, e.g., for a simple SRT
kernel, cf. eqs. (2.3) to (2.7). These include calculating the zeroth and first-order moments, i.e., macroscopic
density and velocity. Since the switch from a direct to an indirect addressing scheme only affects how to access
the data in the LBM kernel is not necessary to show the rest of the collision kernel here. Depending on the
scheme, transformations from the PDF space to specific collision spaces, the collision, and back transformations
would be necessary. However, once the data of the PDFs is loaded, the rest of the collision kernel is only
numerical execution and, therefore, independent from the underlying data structure.

vel0 = pdfs8
(−1,1) + pdfs6

(−1,−1) + pdfs4
(−1,0) (2.3)

vel1 = pdfs5
(1,−1) + pdfs1

(0,−1) (2.4)

𝜌 = pdfs0
(0,0) + pdfs3

(1,0) + pdfs7
(1,1) + pdfs2

(0,1) + vel0 + vel1 (2.5)

𝑢0 = −pdfs3
(1,0) − pdfs7

(1,1) − pdfs5
(1,−1) + vel0 (2.6)

𝑢1 = −pdfs7
(1,1) − pdfs8

(−1,1) − pdfs2
(0,1) + pdfs6

(−1,−1) + vel1 (2.7)

The code which is generated from eqs. (2.3) to (2.7) is shown in Listing 1. As expected for the two-dimensional
case, a loop nest with two loops is generated. The range of both loops is from 1 to 64. In this example, the
size of the data accessed at execution is prescribed at generation time. Thus the shape and strides of the PDF

The Scalable project has received funding from the European Union’s Horizon 2020
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2. Code generation for indirect addressing LBM kernels2.2. Code generation for indirect addressing schemes

field can be resolved directly at generation time. Note here that the data array enters the kernel as a simple
C-pointer, which is why field accesses are resolved via pointer arithmetic. The generated compute kernel is
passed further to a C-compiler which can apply further optimisations. However, it is also possible to directly
generate optimisation like SIMD instructions or loop blocking into the kernel. A careful look at the benefits
of this approach is not the subject of this deliverable but deliverable 5.3.

Listing 1: Generated C-code from eqs. (2.3) to (2.7). The PDF field is accessed directly via the loop counters.
Thus the used access scheme is called direct addressing.

FUNC_PREFIX void kernel(double * RESTRICT const _data_pdfs)
{

for (int64_t ctr_1 = 1; ctr_1 < 65; ctr_1 += 1)
{

double * RESTRICT _data_pdfs_11_28 = _data_pdfs + 66*ctr_1 + 34914;
double * RESTRICT _data_pdfs_1m1_26 = _data_pdfs + 66*ctr_1 + 26070;
double * RESTRICT _data_pdfs_10_24 = _data_pdfs + 66*ctr_1 + 17424;
double * RESTRICT _data_pdfs_1m1_25 = _data_pdfs + 66*ctr_1 + 21714;
double * RESTRICT _data_pdfs_1m1_21 = _data_pdfs + 66*ctr_1 + 4290;
double * RESTRICT _data_pdfs_10_20 = _data_pdfs + 66*ctr_1;
double * RESTRICT _data_pdfs_10_23 = _data_pdfs + 66*ctr_1 + 13068;
double * RESTRICT _data_pdfs_11_27 = _data_pdfs + 66*ctr_1 + 30558;
double * RESTRICT _data_pdfs_11_22 = _data_pdfs + 66*ctr_1 + 8778;
for (int64_t ctr_0 = 1; ctr_0 < 65; ctr_0 += 1)
{

const double vel_0 = _data_pdfs_10_24[ctr_0 - 1] +
_data_pdfs_11_28[ctr_0 - 1] +
_data_pdfs_1m1_26[ctr_0 - 1];

const double vel_1 = _data_pdfs_1m1_21[ctr_0] +
_data_pdfs_1m1_25[ctr_0 + 1];

const double rho = vel_0 + vel_1 +
_data_pdfs_10_20[ctr_0] +
_data_pdfs_10_23[ctr_0 + 1] +
_data_pdfs_11_22[ctr_0] +
_data_pdfs_11_27[ctr_0 + 1];

const double u_0 = vel_0 -
_data_pdfs_10_23[ctr_0 + 1] -
_data_pdfs_11_27[ctr_0 + 1] -
_data_pdfs_1m1_25[ctr_0 + 1];

const double u_1 = vel_1 -
_data_pdfs_11_22[ctr_0] -
_data_pdfs_11_27[ctr_0 + 1] -
_data_pdfs_11_28[ctr_0 - 1] +
_data_pdfs_1m1_26[ctr_0 - 1];

}
}

}

2.2. Code generation for indirect addressing schemes

Based on the direct addressing scheme, we will explain the indirect addressing scheme in the following. Equa-
tions (2.8) to (2.12) show its representation in equation form. The difference between the direct and the
indirect addressing scheme is that the PDF field is not accessed directly via the loop counters anymore but
through an index list that contains all accesses to the data. The index list only contains references to fluid
nodes. Thus the PDF array only needs to contain the fluid nodes, saving the memory for non-fluid cells. It is
not trivial to neglect the memory allocation for domain cells inside an obstacle in a direct addressing scheme
while maintaining optimal performance. For example, the introduction of branches can lead to a compute
kernel that is difficult to vectorise. Using an indirect addressing scheme, it is clear that a certain overhead

The Scalable project has received funding from the European Union’s Horizon 2020
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2. Code generation for indirect addressing LBM kernels 2.3. Creation of the IndexList

occurs for storing the index list. However, once the index list is created, the data can be accessed by a
one-dimensional loop over the index list. Therefore, the data access is incredibly efficient, and no complicated
logical constructions are necessary during the execution. Thus, as already shown in, e.g., [6], it is possible to
achieve state-of-the-art performance results when using the indirect addressing scheme.

With this primary difference between the schemes, it becomes evident which changes in the abstract repre-
sentation are necessary. In eqs. (2.3) to (2.7), a sub- and a superscript described the access of the PDF field.
The index array, a one-dimensional symbolic pystencils Field that contains eight field accesses in each cell,
now replaces the access via sub- and superscript. Further, notice that the subscript now contains all necessary
information to resolve the field access at generation time. Thus the superscript can just be neglected by always
setting it to zero. A cleaner solution would be to introduce a symbolic representation for sparse Fields, which
no longer contain the superscript. However, this is subject to future work. The significant advantage of the
symbolic representation of the complete collision operator is that it is possible to use substitution provided
by sympy. The new symbols containing the indirect addressing information are just different sympy symbols.
Hence, replacing all direct field accesses with indirect ones is easily possible before generating the compute
kernel. Thus, after implementing the basic logic, it is applicable for all collision operators, targets, and other
features provided by lbmpy.

vel0 = pdfs0
𝑖𝑑𝑥7

0
+ pdfs0

𝑖𝑑𝑥5
0

+ pdfs0
𝑖𝑑𝑥3

0
(2.8)

vel1 = pdfs0
𝑖𝑑𝑥4

0
+ pdfs0

𝑖𝑑𝑥0
0

(2.9)

𝜌 = pdfs0
0 + pdfs0

𝑖𝑑𝑥2
0

+ pdfs0
𝑖𝑑𝑥6

0
+ pdfs0

𝑖𝑑𝑥1
0

+ vel0 + vel1 (2.10)

𝑢0 = −pdfs0
𝑖𝑑𝑥2

0
− pdfs0

𝑖𝑑𝑥6
0

− pdfs0
𝑖𝑑𝑥4

0
+ vel0 (2.11)

𝑢1 = −pdfs0
𝑖𝑑𝑥6

0
− pdfs0

𝑖𝑑𝑥7
0

− pdfs0
𝑖𝑑𝑥1

0
+ pdfs0

𝑖𝑑𝑥5
0

+ vel1 (2.12)

As a next step, we take a look at the generated C-code, which results from eqs. (2.8) to (2.12). Once again,
we only consider the calculation of the zeroth and first-order moment, which is usually the first step in the
collision process of the LBM. As we can see in Listing 2, two pointers enter now the compute kernel. One
points to the array containing the PDF values, while the other points to the array containing the field access
which is represented by unsigned integers. As in the symbolic representation, both arrays are one-dimensional.
We now encounter only a single loop over the size of the index list, whose entries access the data of the PDF
field as expected.

2.3. Creation of the IndexList

Even though creating the index list is crucial, it is not directly covered here since deliverable 5.1 only targets
the generation of the compute kernel. Thus, only a brief description follows, heavily based on [7].

lbmpy is not only a code generator for the waLBerla framework but also acts as a standalone package.
Therefore, it must also provide the functionality to create the index array inside the package. Naïvely, this
can be implemented directly in Python. However, NumPy cannot handle this creation as it is not describable
as vector calculations. Since a pure Python implementation is by orders of magnitude too slow for larger
domains, Cython was utilised for this purpose. It is important to note that lbmpy itself is intended only
for simulations on a single node level. Therefore, the treated domain sizes in lbmpy remain small enough to
employ a somewhat decent implementation. Transferring this logic to waLBerla, more thoughts need to be
taken. On the other side, as described in [7], an essential first step for a parallel list creation would be the
geometric decomposition of the domain. Since this is already in the backbone of waLBerla, it seems that
an efficient parallel creation of the index array is compatible with the framework.

The implementation in lbmpy follows two steps. The first step is to loop over the flag array, which contains
the information of boundary and fluid cells. The fluid cells get counted and ordered to form a one-dimensional
index array in this step. The creation of this index array is then the second step. Here, depending on the
streaming scheme, all required indices are appended to it. At this point, it is worth mentioning that no-slip
and periodic boundary conditions can directly be encoded in the index array. No-slip conditions, which consist
of a simple bounce-back scheme, can be resolved by storing the indices such that the direction flip of the PDF
values happens directly inside the cell. The same holds for periodic boundary conditions. Thus both cases
do not introduce any additional calculations and come for free from a computational point of view. This

The Scalable project has received funding from the European Union’s Horizon 2020
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2. Code generation for indirect addressing LBM kernels 2.3. Creation of the IndexList

Listing 2: Generated C-code from eqs. (2.8) to (2.12). The PDF field is accessed indirectly via an index list.
Thus the used access scheme is called indirect addressing.

FUNC_PREFIX void kernel(double * RESTRICT const _data_f, uint32_t * RESTRICT
const _data_idx)

{
double * RESTRICT _data_f_10 = _data_f;
uint32_t * RESTRICT _data_idx_15 = _data_idx + 5*16384;
uint32_t * RESTRICT _data_idx_13 = _data_idx + 3*16384;
uint32_t * RESTRICT _data_idx_17 = _data_idx + 7*16384;
uint32_t * RESTRICT _data_idx_14 = _data_idx + 4*16384;
uint32_t * RESTRICT _data_idx_10 = _data_idx;
uint32_t * RESTRICT _data_idx_11 = _data_idx + 16384;
uint32_t * RESTRICT _data_idx_16 = _data_idx + 6*16384;
uint32_t * RESTRICT _data_idx_12 = _data_idx + 2*16384;
for (int64_t ctr_0 = 0; ctr_0 < _size_d_0; ctr_0 += 1)
{

const double vel0Term = _data_f_10[8*_data_idx_13[4*ctr_0]] +
_data_f_10[8*_data_idx_15[4*ctr_0]] +
_data_f_10[8*_data_idx_17[4*ctr_0]];

const double vel1Term = _data_f_10[8*_data_idx_10[4*ctr_0]] +
_data_f_10[8*_data_idx_14[4*ctr_0]];

const double rho = vel0Term + vel1Term +
_data_f_10[8*_data_idx_11[4*ctr_0]] +
_data_f_10[8*_data_idx_12[4*ctr_0]] +
_data_f_10[8*_data_idx_16[4*ctr_0]] +
_data_f_10[8*ctr_0];

const double u_0 = vel0Term -
_data_f_10[8*_data_idx_12[4*ctr_0]] -
_data_f_10[8*_data_idx_14[4*ctr_0]] -
_data_f_10[8*_data_idx_16[4*ctr_0]];

const double u_1 = vel1Term -
_data_f_10[8*_data_idx_11[4*ctr_0]] +
_data_f_10[8*_data_idx_15[4*ctr_0]] -
_data_f_10[8*_data_idx_16[4*ctr_0]] -
_data_f_10[8*_data_idx_17[4*ctr_0]];

}
}

}

The Scalable project has received funding from the European Union’s Horizon 2020
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2. Code generation for indirect addressing LBM kernels 2.4. Numerical comparison

optimisation is especially important for the no-slip boundary conditions since these are typically frequently
encountered in practical simulations. It would also be possible to directly cover the boundary handling inside
the compute kernel for a direct addressing scheme. However, it is not possible without introducing branches.
A careful comparison of this technique and the list-based approach’s performance follows in deliverable 5.3.

2.4. Numerical comparison

In the following, we compare the compute kernel generated with the direct and the indirect scheme on a
numerical setup in a simple test case. Since the generation of boundary conditions and communication
patterns are subject to deliverable 5.2, this test case is fully periodic and runs in a two-dimensional domain
on a single node. For this purpose, we implemented a convected two-dimensional isentropic vortex (CoVo).
As this example is already carefully described in deliverable 2.1, we only provide a brief description here.
Further, it is vital to notice that an indirect addressing scheme cannot play its strength in this test case since
it exclusively contains fluid cells. This means the direct addressing scheme is already the most optimal scheme
here and thus the indirect addressing scheme would just produce an overhead because in addition to the PDF
fields the index array needs to be allocated. In practice, however, introducing a second list, that stores the
information of continuous fluid cells occurring in the domain, can reduce the size of the actual index list. After
all, indices for parts of the domain where we find continuous fluid cells do not need to be stored because these
can be accessed via direct addressing. Thus, it would act as a fallback case to the direct addressing. This
approach is the so-called reduced indirect addressing approach [7]. Such optimisations are deferred to a later
project stage.

The convected two-dimensional isentropic vortex can be generated using the following function:

𝜓(𝑥, 𝑦) = Γ exp (−(𝑥 − 𝑥𝑐)2 + (𝑦 − 𝑦𝑐)2

2𝑅2𝑐
) (2.13)

with Γ and 𝑅𝑐 the circulation and vortex radius, respectively. 𝑥𝑐 and 𝑦𝑐 correspond to the coordinates of the
vortex centre. Following this, both pressure and velocity local components can be expressed as follows:

𝑢 = 𝑈0 + 𝜕𝜓
𝜕𝑦 , 𝑣 = 𝑉0 − 𝜕𝜓

𝜕𝑥 and 𝑃 − 𝑃0 = − 𝜌Γ2

2𝑅2𝑐
exp (−(𝑥 − 𝑥𝑐)2 + (𝑦 − 𝑦𝑐)2

𝑅2𝑐
) (2.14)

Table 2.1 describes the exact setup to compare the direct and indirect addressing scheme.

For the parameter conversion between physical and lattice units, we choose a reference length of 0.1 and a
reference velocity of 0.014099. The conversion factors are then defined as

𝐶𝑙 = 𝑙ref
𝑙lattice

(2.15)

𝐶𝑢 = 𝑈0
𝑢lattice

. (2.16)

Both simulations run for 1000 timesteps. Figure 2.2 and fig. 2.3 show the velocity magnitude after the
initialisation as well as after 1000 timesteps for the direct and indirect addressing scheme, respectively.

From the visible results, it is clear that both simulations agree well. However, this is not enough to ensure
that both simulations compute the same result. Therefore, the obtained velocity fields are compared in fig. 2.4
using their relative error

𝜖 = ‖uindirect − udirect‖
‖uindirect‖

. (2.17)

The deviation between the velocity field obtained via the direct and the indirect addressing approach is
calculated every 20 timesteps. At the beginning of the simulation, the deviation is zero, which has to be the
case since both velocity fields are initialised in the same way. However, progressing further in the simulation,
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Table 2.1.: Characteristics of the CoVo use case

Convected Vortex test case

Domain bounding box -0.05 x 0.05 m

Resolution 64x64

reference length 0.1

Convection Speed 𝑈0= 170 𝑚.𝑠−1;𝑉0= 0

Lattice velocity 0.014099

Circulation Γ= 34.728 𝑚2.𝑠−1

Lattice circulation 0.0028802

Radius 𝑅𝑐= 0.005 m

Lattice Radius 3.2

Reynolds number 1.082e6

Relaxation rate 1.99999

Collision operator Cumulant

Lattice stencil D2Q9

a small deviation is noticeable. Being in the order of 10−14, it is not concerningly large. However, since
both schemes execute the same setup with the same algorithm, the obtained results would be expected to be
completely similar.

A possible explanation of the obtained deviation might be the execution order of the calculation. As stated
in section 2.3, the first step to obtaining the index list is by enumerating the fluid cells. Thus the execution of
the streaming and collision later follows this enumeration. Slight deviations can occur if this is not the same
order as in the direct addressing scheme. A closer, careful look at the origin of this deviation is subject to
future work.
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(a) Initialisation (b) Timestep 1000

Figure 2.2.: Simulation of the CoVo test case with direct Addressing

(a) Initialisation (b) Timestep 1000

Figure 2.3.: Simulation of the CoVo test case with indirect Addressing

Figure 2.4.: Difference between the velocity field obtained from a simulation of the CoVo test case using a
direct addressing scheme and using an indirect addressing scheme.
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Chapter

3 Conclusion
In deliverable 5.1, we elucidated the successful generation of LBM kernels using an indirect addressing scheme.
Due to the usage of the code generation framework lbmpy, it was possible to directly combine the indirect
addressing scheme with all methods of lbmpy, which was demonstrated in section 2.4 by using the cumulant
collision operator with the indirect addressing scheme. Furthermore, it is possible out of the box to obtain
kernels for accelerator hardware like GPUs. While the results on such hardware already look promising
compared to the results obtained by direct addressing, a careful analysis will be performed in deliverable
5.3. The same holds for the performance on CPU architectures. Here, necessary integer intrinsics need to
be introduced to pystencils to ensure a SIMD vectorisation of the compute kernels. Without the specialised
instructions, it is not possible to gather performance results with the LBM kernel using the indirect addressing
that is compatible with a classical LBM kernel using direct addressing.

Furthermore, both schemes need to be compared in memory consumption since the indirect addressing scheme
introduces an additional overhead with the index list. However, to gather a concise picture, the generation of
the boundary kernels needs to be done first.
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Chapter

A LB stencils
In appendix A the velocity sets for different three-dimensional LB stencils are shown.
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Figure A.1.: The discrete velocities for the D2Q9 stencil.
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Figure A.2.: The discrete velocities for the D3Q19 stencil.
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A. LB stencils
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Figure A.3.: The discrete velocities for the D3Q27 stencil.
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