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Chapter

1 Introduction
Task 5.1 [6] of the SCALABLE project was to extend the code generation pipeline of lbmpy [2] to support
the generation of sparse data storage LBM kernels. This goal was successfully reached and demonstrated in
deliverable 5.1 [6]. To support a full CFD application such as the simulation of a landing-gear of an air plane
(LAGOON project [8]), the code generation pipeline has to be further enhanced to also support the code
generation of boundary and communication kernels as shown in Figure 1.1. This is the content of the work
package and deliverable 5.2, here.

In chapter 2 the generation of the boundary handling kernels is described, while in chapter 3 the focus is
on the generation of the communication of sparse data. In chapter 4 the LAGOON test case running with
generated sparse data storage kernels is evaluated.

lbmpy / pystencilsModel
creation

Code gen-
eration and
optimisation

Compute
kernel

Boundary
conditions

Communi-
cation

Backends CPU: C-Code
GPU: CUDA and OpenCL

Execution Interactively
with IPython

MPI distributed
with waLBerla

Figure 1.1: Complete workflow of combining lbmpy and waLBerla for MPI parallel execution. It can be
seen, that for a full CFD application a compute kernel as well as a boundary and communication
kernel needs to be generated.
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Chapter

2 Code generation for
boundary handling of sparse
data storage

2.1 List adaptations for boundary handling

To implement sparse data storage in waLBerla [3], two data structures are needed: One array storing all
PDF values in a linear fashion. These PDFs are usually sorted per direction. Thus one can think of a linear
array containing all PDFs in the center followed by a linear array containing all PDFs pointing north and
so on. This is a so called Structure of Array format and was previously shown to be more usually efficient
than other storage formats [9]. The other data structure needed is a list, called the index list, to store the
neighbouring information of the cell. More precisely, the index list stores a pointer for every PDF of a cell
to the propagation destination of the propagation direction with respect to the streaming pattern. So as it
is shown in Figure 2.1 (assuming pull streaming pattern) cell 6 stores cell 1 as pull pointer in the northern
direction and cell 11 as pull pointer in the direction south. For more information about the list generation
see [9].

To extend the generated sparse data LBM kernels with boundary handling, the list has to be modified in
different ways for different boundary conditions.

Interestingly, no-slip and periodic boundary conditions can directly be encoded in the index array. No-slip
conditions, which consist of a simple bounce-back scheme, can be resolved by storing the indices such that
the direction flip of the PDF values happens directly inside the cell. The same holds for periodic boundary
conditions. There, the index list entry of the cell at the boundary just has to be set to the cell at the other
side of the domain. Thus, both cases do not introduce any additional calculations or an extension to the index
or PDF list and come for free from a computational point of view.

For other boundary conditions such as velocity bounce back (UBB) or pressure boundaries, the PDF list as
well as the index list has to be extended. To fill the PDF and index list, a flag field containing the whole
domain is used. To implement a velocity bounce-back boundary for sparse data storage, all cells, which are
marked as UBB in the flag field, are appended to the PDF list. Further, the index list is modified, such that
the indices of a cell, which is in the neighborhood of the UBB boundary, are adjusted to point to the boundary
cell.

So let’s assume, a pull propagation scheme and a D2Q9 stencil is used as shown in Figure 2.1: If the cell with
index 0 is set to a velocity bounce back boundary, the cell is first registered to the PDF list. Next, the cells
in the direct neighborhood of the UBB boundary cell 0 are collected, and the pull indices of the directions
pulling from the boundary cell are adjusted. In Figure 2.1 the pull indices of direction 𝑁 of cell 5 have to be
adjusted to point to the northern PDF of cell 0. The same procedure is then also done for other directions.

Other boundaries such as the pressure boundary work according to the UBB boundary.
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2 Code generation for boundary handling of sparse data storage 2.2 Generated boundary kernels
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Figure 2.1: Illustration of the PDF list with fluid cell (blue) and the appended boundary cells (yellow). Here
only one direction of the PDF is displayed (north), to simplify the illustration. The index list
here is generated for the pull pattern. Again, only the northern pull indices are illustrated, so for
example cell 5 has to pull its northern PDF from boundary cell 0.

2.2 Generated boundary kernels

As already mentioned in section 2.1, the no-slip, as well as the periodic boundaries, are a special case for
sparse data storage, because the boundaries can be realised by adjusting the index list in the right way. So to
realise no-slip boundaries, if there is a no-slip boundary in direction 𝑑, the pull index of the PDF in direction
𝑑 is just set to the inverse direction of 𝑑 of the same cell. For periodic boundaries, the cell on the other side of
the domain is just used for the pull index. This means, that there is no need for an explicit boundary kernel
for boundaries no-slip and periodic. It is automatically integrated into the normal LBM kernel through the
modified index list.

This is not the case for other boundary conditions such as velocity bounce back or pressure boundaries. Here
an explicit kernel has to be generated. For this kernel, the third list in addition to the PDF and the index
list is needed, which is called the ”boundary index list”. This list is also generated from the flag field and it
consists of structures with three elements, namely the boundary cell index, the neighbouring fluid cell index,
and the direction of the neighbouring. So in this boundary index list, all relevant directions of all boundary
cells (excluding no-slip and periodic) and the neighbouring fluid cells in these directions are registered. This
means, that only directions are stored, which are streaming in a neighbouring fluid cell.

The boundary kernel then iterates over this boundary index list, and thus updates the PDFs of all boundary
cells with respect to the neighbouring fluid cells according to the boundary rule such as velocity bounce back
or pressure.

As already shown in deliverable 5.1, these kernels can be generated for CPU as well as for GPU accelerators.

The Scalable project has received funding from the European Union’s Horizon 2020
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Chapter

3 Code generation for
communication of sparse
data storage

3.1 List adaptations for communication handling

To run in parallel, the framework waLBerla is based on a domain partitioning consisting of blocks. The
data structures for the sparse kernels such as the PDF list or the pull index list are stored locally per block.
To run a sparse data storage application on more then one block, data has to be transferred between blocks.
Therefore, communication between blocks has to be integrated in the code generation pipeline for sparse
kernels.

To achieve communication between blocks, the PDF list has to be modified again. This time, the cells behind
an MPI interface, which are called ghost layers, are appended to the PDF list, which already contains the
fluid cells of the current block and maybe also some boundary cells. Again, the index list of fluid cells next
to the MPI interface is adjusted, so that the relevant directions pull from the ghost layer cells, as it is shown
in Figure 3.1.

Furthermore, for every communication direction of a block, a pair of pointers pointing to the start of the
ghost layer cells of this direction and the number of PDFs, which are sent to the neighbour, is stored (see
Figure 3.1).

3.2 Packing / unpacking kernels

In the actual packing kernel, which is called with a specific direction 𝑑, all PDFs that are sent to the neighbour
block in 𝑑 are collected, with the help of the pair consisting of the starting pointer to the PDF list for 𝑑 and
the number of PDFs to be sent. The collected PDFs are packed in a buffer, which is then handed over to the
standard waLBerla communication routines. These communication routines are again available for a CPU
backend as well as for a GPU backend.

The unpacking kernel then receives a buffer from the waLBerla communication routine. Again the position
in the PDF list is determined using the pointer for a specific direction 𝑑 and the number of ghost layer cells
in direction 𝑑. Then the received buffer is just written to the determined position on the PDF list, and the
communication is done.

Because the packing and unpacking kernel look exactly the same for various stencils as well as for various
collision methods, these kernels do not need to be generated at all. The whole logic is included in the PDF
and index list as well as in the created pointers to determine the right positions of the buffers in the PDF list.

It has to be said, that mesh refinement for sparse data storage is not implemented yet, which would make the
communication between blocks much more complex.

The Scalable project has received funding from the European Union’s Horizon 2020
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Figure 3.1: Illustration of the PDF list with fluid cells (blue) and ghost layer cells (green), which are cells from
another MPI process, separated by a MPI interface. Ghost layer cells are appended to the PDF
list and the index list is modified, so that for example the northern pull index of cell 6 points to
the northern PDF of ghost layer cell 11. Also the pointer to the start of the ghost layer cells and
the number of cells is stored, which is used by the packing / unpacking kernels to find the right
position in the PDF list. To simplify the illustration, only PDFs in direction north are shown in
the lists, of course other directions have to be stored for the PDF list, the index list and the start
pointer as well.
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Chapter

4 Results
To test the implemented generation pipeline for a full CFD simulation, the LAGOON (LAnding-Gear nOise
database for CAA validatiON) test case [7] is simulated. The test case consists of a velocity-bounce-back
boundary in the west and a pressure boundary at the outlet in the east.

To damp spurious wave generation at the outlet a sponge region is established:

̃𝜙 (𝑡 + Δ𝑡) = 𝜙 (𝑡 + Δ𝑡) − 𝜎sponge(𝑧) [𝜙 (𝑡 + Δ𝑡) − 𝜙target] . (4.1)

Here 𝜙 is the order parameter to which the sponge region is applied to [4]. For the sake of simplicity, it is
applied to the relaxation rate 𝜔 in the scope of this deliverable. The length of the sponge region is chosen to
be 𝐿sponge = 640 in lattice units and 𝜙target = 1.9.

The rest of the domain boundaries are set to periodic boundaries, except the landing gear geometry, which
is set to no-slip conditions. Therefore, four different generated boundary conditions for sparse data storage
are tested for their functionality. To verify the correctness of the generated communication kernels, the
simulation is run with 30 blocks is x-direction, 6 blocks in y-direction, and 4 blocks in z-direction, where each
block consists of 643 cells. This results in a total cell count of 188,743,680 and a cell size of 9.0𝑚𝑚.

The velocity of the inflow boundary is set to 78.99 m/s and the reference length for the Reynolds number
is the wheel diameter of 0.3𝑚. Therefore, the Reynolds number is 1.59 ⋅ 106. The goal was to simulate 0.3
seconds of the flow around the landing gear with a time step size of 5.6969 ⋅ 10−6, which results in 52,659
time steps to run. The relaxation rate for the Lattice Boltzmann method is then 𝜔 = 1.9999874. As collision
model the regularised cumulant operator is used [5].

The simulation run on JUWELS Cluster [1] on 15 nodes for 2 hours and 16 minutes. The performance of the
generated code is 1.80 mega lattice cell updates per second (MLUPS) per core, so the total performance on
15 nodes is 1297.15 MLUPS. A full list of all simulation parameter is shown in Table 4.1. The outcome of the
simulation can be seen in Figure 4.1, where the Q-criterion of the velocity is displayed. Further, the domain
partitioning is indicated by the grey lines, where one block is one cube.

Number of blocks 30 x 6 x 4
Number of cells per block 64 x 64 x 64
Cell size 9.0 mm
Total number of cells 188,743,680
Number of cores 720
Performance per core 1.80 MLUPS
Total performance 1297.15 MLUPS
Simulated time 3 s
Time steps 52,659
Runtime 136 min
Reynolds number 1.59 ⋅ 106

Relaxation rate 𝜔 1.9999874
Inflow velocity 78.99 m/s

Table 4.1: Summary of all relevant simulation parameters for LAGOON test case on JUWELS Cluster.
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4 Results

Figure 4.1: LAGOON test case visualised by the q-criterion. The grey lines are indicating the domain parti-
tioning into multiple blocks.
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Chapter

5 Conclusion
The goal of task 5.2 was to support a full CFD simulation. Therefore, the effort of task 5.1 [6] was continued
by extending the lbmpy generation pipeline with sparse boundary kernels as well as sparse communication
handling. As it can be seen by the simulation of the LAGOON landing gear configuration in chapter 4, this
goal was well achieved. Because of the code generation, the generated kernels can run on CPUs as well as on
GPUs. Furthermore, the flexibility of the approach is demonstrated by the different boundary conditions and
by the inherent possibility to employ the advanced cumulant collision operator. Due to the functionality of
the code generator, it is not necessary to design and implement each of the necessary kernels individually and
with time-consuming and error-prone manual effort. Instead implementing one kind of boundary condition
results in immediate support of all boundary conditions with similar data access patterns. Thus, for example,
by supporting velocity boundary conditions, pressure boundaries are available immediately without further
effort.

We further emphasise that it is now possible to use waLBerla to compute an example configuration with
an industrially-relevant number of cells. Though we have not yet put emphasis on optimising the generated
compute kernels in this first demonstration, this already meshes with almost 200 million cells, running on
more than 700 cores. Thus this simulation size is already larger than the references data of [8].

Thus the results reported here in D5.2 can set a reference point for the code optimizations in WP3. We further
point out that our compute kernels will support the usage of heterogeneous computing in terms of NVIDIA
and AMD GPUs. Performance analysis and improvements of these are relevant for and are closely connected
to work in WP4 and WP2. Additionally, we expect that a systematic analysis of the energy consumption
between classical directly addressed compute kernels and indirect addressing kernels as presented in D5.2 can
lead to interesting findings for WP6.

The next steps, planned for work package 5.3 will be optimizations of the generated kernels. This includes
in-place streaming and SIMD vectorization on the CPUs. These will be implemented and benchmarked next.
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