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Executive Summary 

The main objective of SCALABLE for CSGROUP is the improvement of LaBS deployment in 
bigger clusters of thousands of cores, achieved by a transfer of performance technology from 
WaLBerla. Therefore, in the earlier work packages 3.1 [1], 3.2 [2] and 3.5 [3] many 
improvements were made to LABS scalability. In the previous reports on work package 3.5 
and 3.2 we introduced works on LaBS targeting GPU clusters. In this report, we present the 
development of a prototyping GPU version of LABS. 
 

1 Introduction 

1.1 Context 

Lattice Boltzmann methods (LBM) are nowadays trustworthy alternatives to conventional 
CFD methods, since it has been already shown in several engineering applications that they 
are faster than Navier-Stokes approaches in comparable scenarios. LBM methods can handle 
complex geometries and a wide range of Multiphysics applications that are of high industrial 
relevance. The main distinguishing feature of the LBM is its algorithmic locality stemming 
from an explicit time step. Thus, the LBM is especially well-suited to exploit advanced 
supercomputer architectures through vectorization, accelerators, and massive 
parallelization. 

1.2 Objective 

The main objective of SCALABLE for CSGROUP is the improvement of LaBS scalability, thus its 
deployment in bigger clusters of thousands of cores. Among massive parallelization 
techniques, GPU clusters have nowadays become more efficient and reliable for industrial 
applications than decades ago. LaBS future developments will thus target GPU clusters 
architectures as well as is does for CPU clusters. Initially, we didn’t plan to develop a LaBS 
GPU version, but since we haven’t deeply changed all our data structure as we initially 
planned (wp 3.1 [1]), we decided to work on a GPU version. This decision was mainly 
motivated by our exchanges with Marcus Holzer, Gabriel Staffelbach of waLBerla/ Cerfacs and 
by Jayesh Badwaik from Juelich university on aspects of GPU implementation. 
However, to maintain as much as possible a single code for both CPU and GPU, we chosen 
the solution provided by the C++17 standard parallelism combined with the NVC++ compiler, 
a compiler able to provide GPU and CPU executables from the same C++ source code. 
 
In the current document, we will present a LaBS GPU prototype developed for a simple test 
case, on uniform mesh.  

2 LaBS architecture 

LaBS code execution can be divided into three parts: the pre-processing phase, the solver 
phase and the post-processing phase. 

2.1 Pre-processing 
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The aim of the pre-processing phase is to manage the user inputs, configure the data structure 
and the whole simulation workflow for the solver and post-processing. This workflow uses 
the concept of data flow programming where a schedule of tasks to be executed is built. As 
LaBS manages complex geometries for industrial test cases, it uses an unstructured cell design 
which results in a lightweight mesh compared to structured blocks widely used in many LBM 
software. So, the pre-processing performs a parallel octal mesher step with domain 
decomposition which enhances surface meshes files provided by the user, describing the 
geometry, refinement and boundary constraints. Among the important steps of the pre-
processing phase, one has the load-balancing step, the sewing step capable of improving the 
quality of the mesh provided by the user, the scheduler step which generates the main input 
for the remaining code execution: the schedule of tasks from data (geometry) and physics. A 
field-mapping step manages initial conditions and other sources fields provided by the user 
in various forms for physics.  

The entire pre-processing step launched by the CPU. We have however developed a in 
previous work (wp 3.5) an algorithm which manages in MPI multi-process parallelism a pre-
processing on N CPU cores targeting P GPU cards, with P < N.  

2.2 Solver phase 

Once the pre-processing is achieved, the solver phase consists of reading the schedule and 

executing tasks of which the LaBS unstructured cell design of data is organized into families 

of cells where the same LBM computations functions are applied. Thus, the solver has two 

main parts: the kernel and the hard library. The solver kernel drives the hard library for physics 

computations and output calculations required within each timestep.  Each function of the 

hard library consists of an API of two arguments defining the range of nodes on which its 

computations apply. The general conception of the LaBS GPU version is then based on the 

parallelization of the functions of the hard library such that it be compiled into compute 

kernels for GPU device. 

2.2.1 NVIDIA nvc++ compiler and CUDA unified memory 

To achieve the goal of calling physics computations functions (hard library) within either a 
CPU or GPU device without re-coding specifically the entire solver phase for GPU device, we 
have chosen a mean which needs less code changes and keeps the code being able to be 
compiled for CPU or GPU. The NVIDIA compiler nvc++ and its CUDA unified memory 
technology are designed for this purpose. Using the standard C++ 17 parallel algorithms, the 
loops written in parallel way using the standard C++ std::for_each algorithm are automatically 
converted into a CUDA callable function targeting a NVIDIA GPU device. Many other ways to 
write parallel part convertible to a GPU device code by the nvc++ compiler exists: openACC, 
openMP. The CUDA unified memory technology is a way of managing memory by NVIDIA 
nvc++ compiler such that data allocated being automatically transferred from CPU (host) to 
GPU (device) and back from device to host when needed. However, these NVIDIA tools are 
designed for (almost newer) NVIDA GPU cards only, no GPU card from other vendors can be 
used at this point. 
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2.2.1.1 Parallel loops 

The functions of the hard library (physics computation functions) are mainly organized in two 
blocks of codes: the first block retrieves data and other parameters of the kernel needed for 
the computations and the second block is the loop on the range of nodes on which the 
computations are applied. The standard C++ algorithm std::for_each API needs a callback 
function and two iterators on objects to loop on as mandatory arguments. The two bounds 
of the range of nodes already used by the functions of the hard library are the base of the 
iterators needed by std::for_each API, since LaBS do not store all data of each node within a 
data structure, as it may be done in some other LBM codes. The second mandatory argument 
type, the callback function can be written in two main ways for nvc++: a lambda function or 
an object function, functions pointers are not supported by nvc++ for GPU target. We use the 
object function approach which has the main advantage of keeping almost unchanged parts 
of existing codes which are moved into a C++ class, whose () operator becomes the entry 
point. However, all functions called must be inlined if not, it won’t be compiled by nvc++ for 
the device, but for the host. The main requirement for all data used on the device and thus 
being able to be managed by the CUDA unified memory, is its allocation on the heap; data on 
the stack being ignored or randomly handled by the device. 

2.2.1.2 Data transfer between host and device 

The main goal of the CUDA unified memory technology is the automatic handling of data 
transfer between host and device, since no explicit CUDA code must be written within the 
standard C++ code being compiled. NVIDIA nvc++ compiler requires that data must be 
allocated in the heap because the standard C++ memory allocator in this case is automatically 
replaced by NVIDIA own allocator implementation. However, a nvc++ compiler option exists 
allowing the user not to use CUDA unified memory allocator. 

The first tests made with LaBS on GPU face an important memory overhead problem due to 
the CUDA unified memory policy adopted by NVIDA for efficient allocation/deallocation. It 
appears that all C++ standards containers used in LaBS were not always deallocated, leading 
to a continuous growing memory. For a specific executable, NVIDIA provides some 
environment variables for adjusting the bounds of the unified memory allocation. The later 
options could not be easily applicable in LaBS, since it requires that the user/programmer 
knows about the amount of memory required for each test case before its launch. Another 
option was to compile parts of the code not called by the device with the CUDA unified 
memory allocator disabled by the nvc++ compiler option. However, since no safe memory 
communication can be done between data managed by the CUDA unified memory allocator 
and the standard C++ memory allocator, the latter option required an entire refactoring of 
LaBS code for the separation of parts being handled by the two nvc++ compiler options used 
for this purpose with a communication API.  

2.2.1.3 Hint 

A hint has finally been found by using two memory allocators in the code: the CUDA uniform 
memory allocator and another defined allocator which skips CUDA unified memory allocator. 
In practice, variables used by the device or shared between the host and device are allocated 
in the C++ standard way, since CUDA unified memory allocator automatically replaces the 
standard malloc/free calls by its own allocator. The remaining variables are allocated with the 
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defined allocator which for example, calls indirectly malloc/free, but from a library compiled 
without CUDA uniform memory allocator.  

The following summary shows the differences in terms of memory overhead using CUDA 
Unified memory allocator in different steps of the run. Test case of 630 508 fluid nodes 

 

Runing step  

Peak memory in Mega bytes per processor 

CUDA unified memory on 
shared data + std allocator 
otherwise 

CUDA Unified memory 
everywhere 

Input 155.8 132.3 

FluidLinks 944.0 2815.3 

Migrate 1055.4 5339.8 

FieldMapping 1071.4 5354.7 

Poster 1364.4 6854.6 

 

2.2.2 Kernels developments 

As a first version of LaBS on GPU, we have focused our efforts on the development of a version 
for a simple test case, i.e., a uniform test case with the basic physics solved, using   the HRR 
scheme and the D3Q19 LBM stencil. Thus, five hard library functions are coded for the GPU 
version: Macroscopic, Collide, Propagate, Gradient for physics and Dimensionality which 
handles computed variables for output. Many tests and profiling have been done with the 
objective of continuously improving the acceleration factor, using the NVIDA profiling tools 
nvprof and nsys.  

In LaBS, computations are performed with a cache mechanism which limits the size of 
memory managed. Variables computed during the solver phase are stored in SOA (structure 
of array) way, however a temporary AOS (array of structure) data storage is used for some 
computations involving pdf (particle distribution functions). These tunings have proven 
performance and scalability on CPU. 

The first GPU versions, very close to the usual LaBS CPU version, had very poor performances. 
The following changes were implemented and improved the GPU compiled version: 

The removal of cache mechanism on the GPU compilation thus, using the largest 
family/range of nodes for computations, allowing more optimized computed kernels. 

The merging of functions. We observed that the less one calls the device during a time step, 
the more computations are accelerated on GPU. So, we defined a simplified scheme for the 
purpose of the GPU version which uses mainly two functions: a physics computation function, 
which sequentially calls two GPU kernels: (Propagate + Macroscopic) and (Gradient + Collide) 
and a third kernel: Dimensionality. All hard library functions could not be merged. 
Dimensionality is being called depending on output times and other related user 
specifications; thus, it becomes an independent GPU kernel. We then merged (Propagate + 
Macroscopic) into a GPU kernel, and (Gradient + Collide) into another GPU kernel, since the 
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second step of computations (Gradient + Collide) needs computed Macroscopic values of the 
neighborhood of a node being computed, thus the first step (Propagate + Macroscopic) must 
have been completed entirely. We also call successively the two main GPU kernels inside the 
same function launched by the scheduler. 

The following table shows differences between a version with five GPU kernels and an 
optimized version running only three kernels on double precision computations, no 
computation on outputs. 

 

Mesh number of fluid nodes  

Solver step performances in MLUPS 

Five GPU kernels called by 

five hard library functions  

Merged version with three 

GPU kernels called by two 

hard library  

100x100x100   (1 M) 27.8 204.06 

128x128x128  (2.09 M) 28.04 206.43 

 

The reduction of memory footprint. Among the quantities analyzed using NVIDIA profiler 

tools, one can denote the size of memory and number of registers used by each GPU thread, 

the occupancy percentage of the GPU card and the size of the grid used by the GPU kernels. 

We have observed that the grid size is automatically adjusted by nvc++ at runtime such that 

at least two parallel launches be made for each kernel call.  The parameter of which 

optimization improved the performances, and which depends on the kernel implementation 

was the size of memory used within the GPU threads. So, we optimized the amount of 

memory data occupies in the kernels by replacing static arrays stored within the object 

functions used as kernel, with C++ macros, and also by keeping at the most local level 

computed quantities usually stored at global scope: Gradients usually stored for all nodes in 

the CPU version for example, are now stored only for the current node being computed by 

the GPU kernel, since the same kernel computes the collision, which needs the gradient, 

immediately after. 

The following table shows differences between a version and the optimized one with memory 
footprint reduced running in a single precision computation, no computation on outputs. 

 

Mesh number of fluid nodes  

Solver step performances in MLUPS 

Without memory footprint 

optimization 

Reduced memory 

footprint 

100x100x100  (1M) 290.89 558.04 

300x300x300 (27M) 309.74 609.31 

 
An optimization of the scheme. Among the lots of tests made to identify the main bottom 

neck of performances on GPU, we added a loop on lots of arithmetic operations in the kernels, 

the latter not solving the physics but just to measure their behavior within the performances. 
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We observed that repeating about N times the loop on arithmetic operations added leads to 

about N/3 extra elapsed time. However, a similar test with la loop on the entire kernel 

(including memory operations) leads to about N extra elapsed time. Thus, since the Propagate 

function does not perform arithmetic operations, but simply pull from SOA and redispose in 

AOS pdf quantities. These pdf quantities when used in AOS storage were achieving best 

performances on CPU. We removed Propagate as standalone function and replaced the table 

of its pulled values by the exact memory operations earlier performed by the Propagate 

function, thus performing in-place propagation when needed. Even if this in-place 

propagation is done twice in the current simplified scheme (Macroscopic, Collide), this 

optimization gave one of the biggest gaps observed on performances. 

The following table shows the difference between the versions with the in-place propagation, 

with computations on output: average density every 1000 iterations, thus four outputs over 

4000 iterations; running in a single precision computation. 

 

Mesh number of fluid nodes  

Solver step performances in MLUPS 

Without in-place 

propagation  

With in-place 

propagation 

100x100x100  (1M) 684.93 1010.9 

300x300x300 (27M) 927.95 1428.05 

 

The following table shows the difference between the versions with the in-place propagation, 

without outputs (deactivated) running in a single precision computation. 

 

Mesh number of fluid nodes  

Solver step performances in MLUPS, no output 

Without in-place 

propagation  

With in-place 

propagation 

100x100x100  (1M) 1038.8 2255.08 

300x300x300 (27M) 1182.1 2550.08 

 

2.3 Post-processing 

The post processing phase is performed at this point on CPU. However, some operations on 
data for outputs are computed within the scheduled operations at each timestep, depending 
on the configuration of output. The operations on output are separated from the hard library. 
The existing data operations on outputs were performed for each node on all its output, with 
data in AOS storage. The later way leads to very poor performances on GPU. We have thus 
improved the data operations algorithm such that it manages operations for each output, on 
all its nodes, thus with data stored in SOA way, which gives a better acceleration factor on 
GPU devices. 
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The following table shows differences when computations are performed on outputs: 
average density every 1000 iterations, thus four outputs over 4000 iterations; running in a 
single precision computation. 

 

Mesh number of fluid nodes  

Solver step performances in MLUPS 

With unoptimized 

computations on output 

With optimized 

computations on output 

100x100x100  (1M) 12.45 684.93 

300x300x300 (27M)  927.95 

 

3 Illustrative test case 

We have made many tests on performances improvements during the developments and 
verified that the physics were “correctly solved” on GPU. We present here some pictures on 
the behavior of the GPU version, compared to the usual LaBS CPU version.  The test case is 
the so called COVO, with 1600x1600x4 nodes.  

COVO is an isentropic vortex is simply moving to the east of a periodic square grid. With time. 
The flow is supposed inviscid Euler Equations. The following picture shows its initial state. 

                                   
Figure 1. COVO test case, picture of the top of the mesh in z direction. Velocity in y direction at initialization. 

The original test case is a 2D case, but for some 2D output matters on the base LaBS version 
extended to GPU, we had to turn into a 3D case by adding 4 nodes in z axis. The number of 
iterations is limited to 1000. The CPU code runed using 32 cores while the GPU was launched 
on a NVIDIA A100 GPU card with 40 GB of GPU memory. The tests have been done in double 
precision simulations. One can observe that the overall behavior of the simulation is quite the 
same on both CPU end GPU. 
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Figure 22. COVO test case, picture of the top of the mesh in z direction. Velocity in y direction at time 3/10. Left CPU 
results. Right GPU results 

 

Figure 33. COVO test case, picture of the top of the mesh in z direction. Velocity in y direction at time 7/10. Left CPU 
results. Right GPU results 

4 Perspectives 

We have developed the first version of LaBS for GPU for a uniform test case, without complex 
physics. The remaining work is to handle the entire hard library into GPU kernels for complex 
physics, a task which needs prior work on refactoring and merging of some functions 
otherwise, small GPU kernels won’t be efficient, as we have observed. The other part of the 
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remaining work is the handling of complex geometry such as meshes with refinements levels, 
porous and rotating domains which may widely affect the data organization into GPU device. 
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