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Cerfacs Strategic Research Plan 2023-2027

• NUMERICAL ALGORITHMS
• Sparse Linear Algebra – Discretization and Finite Elements – optimization
• Novel numerical approaches applied to CFD -> lattice Boltzmann methods

• SUSTAINABLE PROGRAMMING
• Sustaining, Improving, optimizing, and refactoring legacy codes and Quantum,

advanced programming Methods (DSL, PU, New Langages) & Technology watch Coupling
• HPC Workflow (including Data Management) & User Interface

• DATA DRIVEN MODELLING
• Uncertainty Quantification 
• Data Assimilation 
• Physics-based AI 
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Team
• Software engineering
• Codemetrics and software sustainability
• Heterogenous computing in exascale simulations
• Machine learning and AI
• Quantum computing
• Code Generation
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Codemetrics

• Analysis of the technical dept of software
technical dept is the implied cost of additional rework caused by choosing an  easy (limited) 
solution now instead of using a better approach that would take longer

New codeOld code
lbmpy (code generator for LBM)

NEK RS Navier-Stokes solver



Codemetrics

Lower is better

Code generation allows to work in a lower complexity context

lbmpy (code generator for LBM) NEK RS Navier-Stokes solver



Introduction to waLBerla



Introduction: waLBerla

• Written in C++ with a python-based code generator
• Main applications: CFD with the lattice Boltzmann method (LBM), rigid body 

dynamics using the Discrete Element Method (DEM), particulate flows, free-
surface and phase-field flows
• Open source: www.walberla.net

http://www.walberla.net/


Introduction: waLBerla

• Designed for extreme-scale problems (largest simulation: 1 835 008 processes on 
IBM Blue Gene/Q @ Jülich)
• Applied on various different architecture:

• CPU: Intel and AMD architectures as well as ARM chips (e.g. A64FX in Fugaku)
• GPU: Latest NVIDIA and AMD GPUs



Introduction: waLBerla

EU exascale lighthouse codeEU exascale lighthouse code



Stencil Code Generation with pystencils



Excursion: LBM

• Mesoscopic discretisation method used to solve PDEs
• Linear Advection (easy to parallelise) and non-linear Diffusion 

(local collision operator)
• Many different “Versions” with different complexity levels
• Explicit 2nd order scheme

Collision

Cumulants

Central Moments

Distributions (PDFs)

Streaming

Moments

Streaming

Collision



Code Generation Basic Idea

Models / Features
• Different Stencils (2D and 3D)
• Moment-based methods (MRT)

• Efficient SRT and TRT implementations
• Moment basis construction
• Various equilibria
• Forcing approaches

• Different collision space: cumulant method
• Entropic stabilization
• Locally varying relaxation rates e.g. to 

include turbulence models
• Coupling of multiple kernels

Hardware / Optimization

• GPU support
• Vectorization (AVX2, AVX512, QPX, SVE)
• Inner loop splitting to improve 

prefetching due to lower number of 
load/store streams

• Sparse (list-based) kernels for domains 
with many boundary cells

• Data layout: simple two grid stream-
collide, AA pattern, EsoTwist

Solution Code Generation:
 Write a program that writes programs (or performance hotspots)



Code Generation Basic Idea

• Stencil code: apply the same operation on every element of a 
structured array
• Easy to parallelize
• Well suited for accelerators
• Many important methods can be formulated in a stencil form 

(e.g. LBM, FDM, FVM, Multigrid)

Represent problem in a symbolic form to allow for 
optimisations from a very high level and separation 
of concerns



Code Generation Toolchain

Method

Collision 
Equations

Update
Assignments

• Method description
• Definition of fixed and free parameters

• Collision operator as a list of equations
• mapping Q symbolic pdfs to Q output pdfs

• Encodes pdf storage
• Memory access optimizations (Streaming 

pattern)
• Full or sparse storage

C / CUDA
Code

• Clear interface (C-pointers)
• Low level optimizations

aaa

Mathematical optimisation

Architectural optimisation



Method Description

Model definition

Derivation details

Moments/Cumulants 
that span the collision 
space

Equilibrium

Symbolic 
relaxation rates

Fixed/numeric 
relaxation rates



Derivation: update rule

Symbolic representation in index notation. This 
representation contains the field access 
relative to the center cell.

Makes it possible to extract information for 
MPI routines.



Generation: compute kernel

Simple API based on raw pointer 
notation.

Makes it very general and easily to 
combine with existing code or even to 
call the low level code directly from 
high level languages like Python



Combination with HPC frameworks like waLBerla

• Generation of:
• Compute kernels for cell updates
• Boundary conditions
• Packing, Unpacking kernels to pack and unpack 

buffers for MPI communications

• Strictly defined API of the printed kernels 
provides additional advantages like simple 
embedding in boiler plate codes to combine 
the generated compute kernels with existing 
HPC frameworks
• Execution of the compute kernels in Python 

via C-API



Results: Lagoon Uniform mesh

• Strong scaling experiments on up to 65 536 AMD EPYC 
7742 (HAWK) shows almost perfect scaling efficiency

• Weak scaling experiments on up to 4096 AMD MI250 
GPUs shows almost perfect scaling efficiency



Results: Mesh Refinement for turbulent flows

• Domain size: 40 x 20 x 20 m resolved with 1 302 663 168 lattice cells

• Resolution around the object: 0.00025 m with 10 refinement levels

• Cores: 65 536 on the HAWK supercomputer
• About 64 % scaling efficiency 

Simulation of the flow around a landing 
gear of an airplane to show an example 
for a setup with several mesh 
resolutions



Results: Multiphase flows

• Usage of code generation for efficient compute kernels for LBM multiphase flows

• Analysis of physical results and performance

• Almost perfect scalability due to code generation for MPI-packing routines
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An example of the bubble propagation through the concentric annular pipe at 
different timesteps.2

Large scale bubble rise scenario simulated on 
the Piz Daint supercomputer with several 
hundred air bubbles.1

Weak scaling performance benchmark on the Piz Daint 
supercomputer.1



Conclusion



Conclusion

• Better separation of concerns due to Code Generation
• Complex Multiphysics problems can be tackled in large scales
• Sophisticated interplay between generated hotspot code and handwritten framework 

around
• High level of modularity increases maintainability and extensibility
• Convincing performance results on a large number of different architectures (AMD-, 

Intel and ARM CPUs and NVIDIA and AMD GPUs)
• waLBerla -> EU lighthouse code due to uncompromised performance decisions
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