
Tackling Performance Challenges of Large Scale Lattice
Boltzmann Applications using Metaprogramming Techniques

within the Multiphysics Framework WaLBerla

Markus Holzer
Supervisors: Gabriel Staffelbach, Ulrich Rüde and Catherine Lambert

Airbus Scientific Computing Conference 2023

October 25th, 2023

Cerfacs

Pont Saint-Pierre of Toulouse
in the south west of France

Ph.D. Students' Day

Cerfacs Strategic Research Plan 2023-2027

Scalable
Computing

Numerical
Algorithms

Data Driven
Modelling

(DA, UQ, AI)
Sustainable

programming

HSPS: HPC
Simulation of
Propulsions

Systems

HSAA: HPC Simulation
of Aerodynamics and
Aerocoustics of
Fixed/Mobile Surface

CLIMAIR
HPC for
modelling
climate-air
transport links

CLIPROC: Climate
Variability and
Predictability: From Ocean
to Continental Impacts

MODEST:
HPC Modelling
for Environment
and Safety

SHEPCS: HPC
Simulation of
Hydrogen-based
energy production
and clean energy
systems

Cerfacs Strategic Research Plan 2023-2027

• NUMERICAL ALGORITHMS
• Sparse Linear Algebra – Discretization and Finite Elements – optimization
• Novel numerical approaches applied to CFD -> lattice Boltzmann methods

• SUSTAINABLE PROGRAMMING
• Sustaining, Improving, optimizing, and refactoring legacy codes and Quantum,

advanced programming Methods (DSL, PU, New Langages) & Technology watch Coupling
• HPC Workflow (including Data Management) & User Interface

• DATA DRIVEN MODELLING
• Uncertainty Quantification
• Data Assimilation
• Physics-based AI

Cerfacs

Algo-Coop
1. Parallel Algorithms Team
2. Scientific Software Operational Performance

Team
• Software engineering
• Codemetrics and software sustainability
• Heterogenous computing in exascale simulations
• Machine learning and AI
• Quantum computing
• Code Generation

Ce
rf
ac
s

Algo-Coop

CFD

GLOBC

CSG

Codemetrics

• Analysis of the technical dept of software
technical dept is the implied cost of additional rework caused by choosing an easy (limited)
solution now instead of using a better approach that would take longer

New codeOld code
lbmpy (code generator for LBM)

NEK RS Navier-Stokes solver

Codemetrics

Lower is better

Code generation allows to work in a lower complexity context

lbmpy (code generator for LBM) NEK RS Navier-Stokes solver

Introduction to waLBerla

Introduction: waLBerla

• Written in C++ with a python-based code generator
• Main applications: CFD with the lattice Boltzmann method (LBM), rigid body

dynamics using the Discrete Element Method (DEM), particulate flows, free-
surface and phase-field flows
• Open source: www.walberla.net

http://www.walberla.net/

Introduction: waLBerla

• Designed for extreme-scale problems (largest simulation: 1 835 008 processes on
IBM Blue Gene/Q @ Jülich)
• Applied on various different architecture:

• CPU: Intel and AMD architectures as well as ARM chips (e.g. A64FX in Fugaku)
• GPU: Latest NVIDIA and AMD GPUs

Introduction: waLBerla

EU exascale lighthouse codeEU exascale lighthouse code

Stencil Code Generation with pystencils

Excursion: LBM

• Mesoscopic discretisation method used to solve PDEs
• Linear Advection (easy to parallelise) and non-linear Diffusion

(local collision operator)
• Many different “Versions” with different complexity levels
• Explicit 2nd order scheme

Collision

Cumulants

Central Moments

Distributions (PDFs)

Streaming

Moments

Streaming

Collision

Code Generation Basic Idea

Models / Features
• Different Stencils (2D and 3D)
• Moment-based methods (MRT)

• Efficient SRT and TRT implementations
• Moment basis construction
• Various equilibria
• Forcing approaches

• Different collision space: cumulant method
• Entropic stabilization
• Locally varying relaxation rates e.g. to

include turbulence models
• Coupling of multiple kernels

Hardware / Optimization

• GPU support
• Vectorization (AVX2, AVX512, QPX, SVE)
• Inner loop splitting to improve

prefetching due to lower number of
load/store streams

• Sparse (list-based) kernels for domains
with many boundary cells

• Data layout: simple two grid stream-
collide, AA pattern, EsoTwist

Solution Code Generation:
 Write a program that writes programs (or performance hotspots)

Code Generation Basic Idea

• Stencil code: apply the same operation on every element of a
structured array
• Easy to parallelize
• Well suited for accelerators
• Many important methods can be formulated in a stencil form

(e.g. LBM, FDM, FVM, Multigrid)

Represent problem in a symbolic form to allow for
optimisations from a very high level and separation
of concerns

Code Generation Toolchain

Method

Collision
Equations

Update
Assignments

• Method description
• Definition of fixed and free parameters

• Collision operator as a list of equations
• mapping Q symbolic pdfs to Q output pdfs

• Encodes pdf storage
• Memory access optimizations (Streaming

pattern)
• Full or sparse storage

C / CUDA
Code

• Clear interface (C-pointers)
• Low level optimizations

aaa

Mathematical optimisation

Architectural optimisation

Method Description

Model definition

Derivation details

Moments/Cumulants
that span the collision
space

Equilibrium

Symbolic
relaxation rates

Fixed/numeric
relaxation rates

Derivation: update rule

Symbolic representation in index notation. This
representation contains the field access
relative to the center cell.

Makes it possible to extract information for
MPI routines.

Generation: compute kernel

Simple API based on raw pointer
notation.

Makes it very general and easily to
combine with existing code or even to
call the low level code directly from
high level languages like Python

Combination with HPC frameworks like waLBerla

• Generation of:
• Compute kernels for cell updates
• Boundary conditions
• Packing, Unpacking kernels to pack and unpack

buffers for MPI communications

• Strictly defined API of the printed kernels
provides additional advantages like simple
embedding in boiler plate codes to combine
the generated compute kernels with existing
HPC frameworks
• Execution of the compute kernels in Python

via C-API

Results: Lagoon Uniform mesh

• Strong scaling experiments on up to 65 536 AMD EPYC
7742 (HAWK) shows almost perfect scaling efficiency

• Weak scaling experiments on up to 4096 AMD MI250
GPUs shows almost perfect scaling efficiency

Results: Mesh Refinement for turbulent flows

• Domain size: 40 x 20 x 20 m resolved with 1 302 663 168 lattice cells

• Resolution around the object: 0.00025 m with 10 refinement levels

• Cores: 65 536 on the HAWK supercomputer
• About 64 % scaling efficiency

Simulation of the flow around a landing
gear of an airplane to show an example
for a setup with several mesh
resolutions

Results: Multiphase flows

• Usage of code generation for efficient compute kernels for LBM multiphase flows

• Analysis of physical results and performance

• Almost perfect scalability due to code generation for MPI-packing routines

1. M. Holzer, M. Bauer, H. Köstler, et al. “Highly Efficient Lattice Boltzmann Multiphase Simulations of Immiscible Fluids at High-Density Ratios on CPUs and GPUs through Code Generation”. In: The International Journal of High Performance
Computing Applications 35.4 (2021). DOI: 10 .1177/10943420211016525.

2. T. Mitchell, M. Holzer, C. Schwarzmeier, et al. “Stability assessment of the phase-field lattice Boltzmann model and its application to Taylor bubbles in annular piping geometries”. In: Physics of Fluids (2021). DOI: 10.1063/5.0061694
3. C. Schwarzmeier, M. Holzer, T. Mitchell, et al. “Comparison of free-surface and conservative Allen-Cahn phase-field lattice Boltzmann method”. In: Journal of Computational Physics (2022). DOI: 10.1016/j.jcp.2022.111753

An example of the bubble propagation through the concentric annular pipe at
different timesteps.2

Large scale bubble rise scenario simulated on
the Piz Daint supercomputer with several
hundred air bubbles.1

Weak scaling performance benchmark on the Piz Daint
supercomputer.1

Conclusion

Conclusion

• Better separation of concerns due to Code Generation
• Complex Multiphysics problems can be tackled in large scales
• Sophisticated interplay between generated hotspot code and handwritten framework

around
• High level of modularity increases maintainability and extensibility
• Convincing performance results on a large number of different architectures (AMD-,

Intel and ARM CPUs and NVIDIA and AMD GPUs)
• waLBerla -> EU lighthouse code due to uncompromised performance decisions

Thank you very much for your attention!

