
  

Philipp Suffa, Markus Holzer, Ulrich Rüde
Chair for System Simulation, Friedrich Alexander-Universität Erlangen-Nürnberg (FAU)

Generated domain-specific sparse data kernels for high-performance 
Lattice Boltzmann Methods

 
 

  

 

 
 

  Sparse Lattice Boltzmann Method in waLBerla

  

  

1 ... 9 10 ... 19 20 ... 29 30 ... 39 40 ... 49 5150 52 53 54 55

Fluid cells Boundaries Ghost layer

30 12 15 16 18 19 50 52 38 39 53 20 42 22 54 24 25 26 55
... 10 11 31 13 14 32 33 17 34 35 41 21 43 23 45 46 47 27 49

...
51

28

PDF list

Index list

Pull indices North Pull indices East

Pull indices South Pull indices West

  

30

41 53

10

0
12

21 20

11

1

15

43 42

31

2
16

23 22

13

3

18

45 54

14

4
19

46 24

32

5
50

47 25

33

6
52

27 26

17

7

38

49 55

34

8
39

51 28

35

9
22

  

0

10

40 20

30

0

1

11

41 21

31

1

2

12

42 22

32

2

3

13

43 23

33

3

4

14

44 24

34

4

5

15

45 25

35

5

6

16

46 26

36

6

7

17

47 27

37

7

8

18

48 28

38

8

9

19

49 29

38

9
50

51

22

53

54

55

52

Fluid No-slip UBB Ghost layer

  

Optimization: Communication Hiding and Scalability

  

Sparse LBM Applications

In-Place Streaming: AA Pattern

pull
   ODD
time step

  EVEN 
time step

Field A read Field A writeTemporary store PDFs, no field accesses

Field A read Field A write

pushcollide

collide

Optimization: Hybrid Data Structure

Optimization: AA Streaming Pattern

Sparse Data Structure:
● Indirect addressing: Store only fluid 

cells of  domain
 Save memory and computation time

● No-slip and periodic boundaries handled 
implicitly
 No extra boundary kernel needed

Code Generation:
● Integrated in the code generation 

pipeline of lbmpy/pystencils
 Generate sparse kernels for CPU 

and GPU architectures
 Flexible stencils and collision (SRT, 

TRT, MRT, Cumulants, ...)

Structure of PDF list Structure of index list

PDF list and Index list in memory

Domain Decomposition into blocks:
● Indirect addressing (sparse) ↔ Direct addressing (dense) 

● Decision about data structure per block

 Generate sparse and dense kernels based on block 
porosity

● Porosity = fluid cells / total cells 
 Performance superiority of sparse data structure at 

porosity < 0.8

 Theoretical memory consumption superiority  at porosity < 0.66

● Best of both worlds: Hybrid data structure

Theory of in-place Streaming - AA Pattern:
● Two alternating time steps

● ODD time step: PDFs are loaded and stored at the same position 

 For parallel updating no temporary PDF field is needed  ~50% reduced memory consumption

 Avoid “write allocate” memory access on CPU  Save 33% of memory accesses

● EVEN time step: 
 No streaming, therefore no index list access needed  Save ~10% of memory accesses 

Communication Hiding for Sparse Data Structure:
● Divide block into interior and frame cells

● Algorithm:

1) Start communication of ghost layers

2) Run kernels on interior cells

3) Wait for communication to finish

4) Run kernels on frame cells

 Hide communication behind inner kernel runs

LAGOON Test Case:
● SCALABLE application: Aircraft 

landing gear

● 720 Block (720 cores on JUWELS 
Cluser)

 188,743,680 cells

● 2 h run time for 3s simulation time

● Reynolds number: 1.59 * 10⁶
● Sparse data structure only

● But: Low number of boundary cells
 Test case not suited for sparse 

LBM

LAGOON test case visualized by Q-criterion. Grey lines are indicating domain decomposition 
into blocks 

Weak scaling benchmark on NVIDIA A100 GPUs on JUWELS  booster with 320³ cells per GPU

Riverbed velocity profile. Grey mesh indicates dense blocks, 
black mesh indicates sparse blocks

Artificial Riverbed Example:
● Porous media and free flow interaction

● Sediment porosity: 0.4 – 0.6

● Simulation automatically decides per block 
where to use sparse or dense data structure 
(porosity threshold < 0.8)

● Well suited case for hybrid data structure

 Good performance and memory 
consumption for every part of the 
domain

Blood Vessels:
● Complex geometry case with high number of 

small blocks

 Exclude all blocks without fluid cells 
from domain

● Remaining blocks have porosity between 
0.01 and 1.0 (Ø 0.15)

 Sparse Lattice Boltzmann Method very 
worth

● Outlook: Balancing workload over 
processors based on block porosity

Domain decomposition of blood vessels. Black mesh indicates 
sparse waLBerla blocks


	Slide 1

